Содержание / Contents
- 1 Схема управления сверлильным станком
- 2 Видео сверлильного станка в работе
- 3 Файлы
Итак, приступаем. Размеры станка определяйте сами, они будут зависеть от максимального размера плат, которые вы будете изготавливать, плюс расстояние от механизмов до центра. В механизмах CD приводов удалите электродвигатель привода диска, лазерную головку. Прямоугольная труба становится вместо лазерной головки идеально.
В прямоугольную трубу плотно вставьте 2 куска древесины длинной по 30-50 мм на клею или дополнительно закрепите саморезами.
В в верхней стенке прямоугольной трубы по центру просверлите отверстие 25 мм, в нижней стенке отверстие для вала двигателя.
Закрепите двигатель.
Закрепите оба механизма саморезами на прямоугольной трубе. В куске ЛДСП сделайте 2 пропила, закрепите всё это на куске ЛДСП. Сверху закрепите уголок с кнопкой S2 (см. схему).
Перечень компонентов
Вот полный список всего, что потребуется для сборки:
- Печатная плата (ссылка на файлы для изготовления в конце статьи)
- U1 — MC34063AD, импульсный стабилизатор, SOIC-8
- U2 — LM358, операционный усилитель, SOIC-8
- U3 — L78L09, стабилизатор, SOT-89
- D1,D3 — SS14, диод Шоттки, SMA — 2шт
- D2 — LL4148, диод выпрямительный, MiniMELF
- C1 — конденсатор, 10мкФ, 50В, 1210
- C2 — конденсатор, 3.3нФ, 1206
- C3,C4 — конденсатор, 4.7мкФ, 1206 — 2шт
- C5 — конденсатор, 22мкФ, 1206
- R1-R3,R7,R9,R11 — резистор 1 Ом, 1206 — 6шт
- R4,R10 — резистор 22кОм, 1206 — 2шт
- R5 — резистор 1кОм, 1206
- R6 — резистор 10-27кОм, 1206. Сопротивление зависит от номинального напряжения используемого двигателя. 12В — 10кОм, 24В — 18кОм, 27В — 22кОм, 36В — 27кОм
- R8 — резистор 390 Ом, 1206
- RV1,RV2 — резистор подстрочный, 15кОм, типа 3224W-1-153 — 2шт
- XS1 — клемма, 2 конт, шаг 3,81мм
Также мы сделали на 3D-принтере кольцо-ограничитель, для удобной установки на двигатель. Ссылка для скачивания STL-файла для скачивания в конце статьи.
Особенности оборудования для сверления отверстий в печатных платах
Станок для сверления печатных плат – это одна из разновидностей сверлильного оборудования, которое, учитывая очень небольшие размеры обрабатываемых на нем деталей, относится к категории мини-устройств.
Любой радиолюбитель знает, что печатная плата – это основание, на котором монтируются составные элементы электронной или электрической схемы. Изготавливают такие платы из листовых диэлектрических материалов, а их размеры напрямую зависят от того, какое количество элементов схемы на них необходимо разместить. Любая печатная плата вне зависимости от ее размеров решает одновременно две задачи: точное и надежное позиционирование элементов схемы относительно друг друга и обеспечение прохождения между такими элементами электрических сигналов.
В зависимости от назначения и характеристик устройства, для которого создается печатная плата, на ней может размещаться как небольшое, так и огромное количество элементов схемы. Для фиксации каждого из них в плате необходимо просверлить отверстия. К точности расположения таких отверстий относительно друг друга предъявляются очень высокие требования, так как именно от этого фактора зависит, правильно ли будут расположены элементы схемы и сможет ли она вообще работать после сборки.
Сверление отверстий в фольгированном гетинаксе на самодельном станке
Сложность обработки печатных плат состоит еще и в том, что основная часть современных электронных компонентов имеет миниатюрные размеры, поэтому и отверстия для их размещения должны иметь небольшой диаметр. Для формирования таких отверстий используется миниатюрный инструмент (в некоторых случаях даже микро). Понятно, что работать с таким инструментом, используя обычную дрель, не представляется возможным.
Все вышеперечисленные факторы привели к созданию специальных станков для формирования отверстий в печатных платах. Эти устройства отличаются несложной конструкцией, но позволяют значительно повысить производительность такого процесса, а также добиться высокой точности обработки. Используя сверлильный мини-станок, который несложно изготовить и своими руками, можно оперативно и максимально точно сверлить отверстия в печатных платах, предназначенных для комплектации различных электронных и электротехнических изделий.
Сверлильный станок из старого микроскопа
1 Общая информация
Любой станок – это специальный прибор, который собирают из нескольких составляющих. Задача этого прибора заключается в придании человеку возможности обработать тот или иной инструмент с большой точностью. То есть практически исключить из процесса конкретно ручной труд.
Это совершенно необходимо в работе, где нужна точность. Если при этом используется деталь из металла или любого точного материала, то без использования станка вам будет просто не обойтись.
Станок состоит из станины, переходников, установки под движок и еще нескольких механизмов. Все они собираются в единую конструкцию, что жестко зафиксирована в одном или нескольких положениях.
Стандартные и самые дешевые станки или мини-станки, если мы говорим об оборудовании, что предназначается для обработки миниатюрных деталей, могут перемещаться только по одной оси. То есть перемещение рабочего сверла выполняется сверху вниз. Это базовая функция станка, без которой его и станком назвать-то нельзя.
Пневматическое горное сверло для станка
Более продвинутые модели можно точно настраивать на определенную координату, которая выставлена на столе. Это уже могут быть даже полуавтоматические или автоматические модели.
Как вы сами понимаете, именно четкая фиксация на прочной раме и возможность практически исключить человеческий фактор непосредственно в выполнении работ по сверлению – это основной плюс станков.
1.1 Особенности станков для печатных плат
Станки для печатных плат – это одна из разновидностей подобного оборудования. Вот только такие агрегаты, как правило, являются мини-образцами. И это вполне очевидно, ведь работать на них необходимо с печатными платами.
Для образования единых стандартов в электротехнике и создания устойчивого основания были введены печатные платы. Производят их из диэлектрика, на который прикручивают или припаивают различного рода детали и соединения.
Плата может содержать на себе как мелкий транзистор и вывод к нему от элемента питания, так и огромное количество деталей, столь миниатюрных, что неподготовленный человек их даже не рассмотрит (речь идет о компьютерном оборудовании).
Конечно, в данной ситуации стоит отметить огромное количество печатных плат, что различаются по своей конструкции, используемому материалу и т.д. Но отметим, что все они являются разновидностью одного элемента, что выполняет функции основания для микросхем.
Простейшие платы оборудуют дополнительными элементами за счет их прикручивания и последующей пайки. Как вы сами понимаете, для прикручивания деталей необходимо проделать в плате отверстия.
Причем проделывать надо их с филигранной точностью. Расхождение даже в полмиллиметра может быть если не фатальным, то очень ощутимым. Особенно если вы собираетесь заполнить плату полностью.
Установка сверла на станок
Чего только стоит тот факт, что сверла для мини-станка по печатным платам в своем диаметре могут начинаться от образцов в 0,2-0,4 мм. И это если говорить о дешевых станках. Более продвинутое оборудование для создания сложных микросхем будет использовать еще более миниатюрные инструменты.
Как вы сами понимаете, обрабатывать подобные детали вручную – дело не из легких. Даже если вам и получится сделать парочку отверстий в нужном месте и нужной толщины, то займет этот процесс слишком много времени, а результат может быть испорчен единственной ошибкой.
Использовав же станок для печатных плат, работа существенно упрощается и становится практически механической. Равно как и повышается ее производительность. Да и конструкция такого оборудования сложностью не отличается, поэтому создать его можно своими руками.
Сборка
Весь процесс сборки записан на видео: Если следовать именно такой последовательности действий, то собирать станок будет очень просто. Вот так вот выглядит полный набор всех комплектующих для сборки:
Комплектующие для сборки сверлильного станка
Помимо них для сборки потребуется простейший ручной инструмент. Отвертки, шестигранные ключи, плоскогубцы, кусачки и т.д. Перед тем начинать собирать станок желательно обработать напечатанные детали. Удалить возможные наплывы, поддержки, а также пройти все отверстия сверлом соответствующего диаметра. Фанерные детали по линии реза могут пачкать гарью. Их можно также обработать наждачной бумагой. После того, как все детали подготовлены начать проще с установки линейных подшипников. Они закрадываются внутрь напечатанных деталей и прикручиваются к боковым стенкам:
Установка линейных подшипников
Далее устанавливается ручка с шестерней. Вал вставляется в большое отверстие, на него устанавливается основание ручки и все это стягивается болтом на 8мм. Самой ручкой служит винт на М4.
Установка ручки и шестерни
Теперь можно собрать фанерное основание. Сначала боковые стенки устанавливаются на основание, а затем вставляется вертикальная стенка. В верхней части также есть дополнительная напечатанная деталь, которая задает ширину в верхней части. При закручивании винтов в фанеру не прикладывайте слишком большое усилие.
Сборка основания
Сборка основания
Сборка основания
В столике на переднем отверстии необходимо сделать зенковку, чтобы винт с головой впотай не мешал сверлить плату. С торца также установлена напечатанная крепежная деталь.
Установка столика
Теперь можно приступить к сборке блока двигателя. Он прижимается двумя деталями и четырьмя винтами к подвижному основанию. При его установке необходимо следить, чтобы отверстия для вентиляции оставались открытыми. На основание он закрепляется при помощи хомутов. Сначала вал продевается в подшипник, а затем на нем защелкиваются хомуты. Также установите винт М3х35, который в будущем будет нажимать на микропереключатель.
Сборка блока двигателя
Микропереключатель устанавливается на прорези кнопкой в сторону двигателя. Позже его положение можно будет отклибровать.
Установка микропереключателя
Резинки накидываются на нижнюю часть двигателя и продеваются до «рогов». Их натяжение надо отрегулировать так, чтобы двигатель поднимался до самого конца.
Натягивание резинок
Теперь можно припаять все провода. На блоке двигателя и рядом с микропереключателем есть отверстия для хомутов, чтобы закрепить провод. Также этот провод можно провести внутри станка и вывести с обратной стороны. Убедитесь, что припаиваете провода на микропереключателе к нормально замкнутым контактам.
Подключение проводов
Осталось только поставить пенал для сверел. Верхнюю крышку нужно зажать сильно, а нижнюю закрутить очень слабо, используя для этого гайку с нейлоновой вставкой.
Пенал для сверел
Пенал для сверел
На этом сборка окончена! Из доработок вы можете проклеить фанерные детали, для увеличения жесткости. Можно также сделать регулятор оборотов двигателя.
Из чего можно сделать
Сделать мини дрель своими руками можно с помощью использования двигателей из различных подручных средств.
- Фен. Данный вариант является наиболее предпочтительным, так как мощности моторчика от фена будет вполне достаточно для того, чтобы минидрель могла выполнять свои основные функции. Максимальное число оборотов такого двигателя достигает 1500-1800 об/мин.
- Магнитофон. Поскольку мощность двигателя магнитофона очень маленькая, единственное, что может получиться из такой затеи – дрель для печатных плат. Питание двигателя осуществляется от 6 Вольт, а это значит, что вам придется подыскать соответствующее зарядное устройство или батарейку.
https://youtube.com/watch?v=I_wB3_gP4kc
Как сделать сверлильный станок из двигателя от стиральной машины
Главная » Станок » Как сделать сверлильный станок из двигателя от стиральной машины
Сделать сверлильный станок своими руками несложно. В быту очень выгодно иметь инструменты и приспособления для выполнения слесарных и столярных работ.
К тому же после устаревания некоторых бытовых приборов остаётся масса полезных запчастей, электромоторов и других вещей. Из них, при желании, можно в домашних условиях смастерить полезное оборудование.
В этой статье читайте — как сделать сверлильный станок своими руками из дрели или асинхронного электродвигателя.
Настольный сверлильный станок из дрели
Самый простой вариант — собрать сверлильный станок с применением дрели. Она весит не много, поэтому стойку монтируем из досок, ДСП или листового металла
Важно получить угол 90 градусов между плоскостью основания и держателем
Чтобы обеспечить свободный ход дрели строго в вертикальном направлении готовим направляющие. Это могут быть металлические профили. Главным условием является отсутствие люфта и перекосов. Площадка с дрелью должна ходить свободно.
Собрав устойчивую, прочную конструкцию крепим направляющие профиля строго параллельно друг другу и перпендикулярно плоскости основания. На рисунке хорошо видно место крепления дрели к подвижной площадке и способ монтажа направляющих профилей.
На видео внизу страницы можно посмотреть вариант рычажного способа подъёма площадки домашнего сверлильного станка. Для автоматического поднятия дрели вверх после уменьшения силы надавливания ставят пружины на растяжение или на сдавливание.
Сверлильный станок из двигателя от стиральной машины
На фото показан самодельный сверлильный станок, отличающийся от рассмотренного выше типом электропривода и более сложной механикой. Зачем нужны такие усложнения. Дело в том, что асинхронный двигатель от старой стиральной машинки более увесистый, и имеет большую вибрацию. Чем дальше от стойки расположен двигатель, тем сильнее будет тряска. Интенсивная вибрация будет приводить к неточному сверлению и поломке сверла. Есть два выхода – сделать мощную станину, когда при опускании сверла опускается и привод, или поместить мотор ближе к стойке держателя неподвижно, тогда ходить будет только рабочая часть станка. Второй способ требует более сложного исполнения. Здесь понадобятся шкива и ремень, позволяющие регулировать скорость вращения. Есть много вариантов и без ременной передачи с расположенным у стены приводом. Их собрать намного проще, но рассматриваемая ниже сборка отличается нестандартным подходом, и некоторые применяемые приёмы, возможно, окажутся полезными. По словам автора этой конструкции вибрации всё же есть, но они настолько минимальны, что при сверлении железа сверлом 0,7 мм, сверло осталось целым. Поскольку ни от автора, ни от других пользователей интернета нет описания по сборке такого станка, мы постараемся вкратце рассмотреть монтаж движущихся и регулировочных частей самодельного настольного сверлильного станка.
Конструктивные элементы сверлильного мини-станка
Сверлильные мини-станки, собранные своими руками, могут серьезно отличаться друг от друга: все зависит от того, какие комплектующие и материалы были использованы для их изготовления. Однако как заводские, так и самодельные модели такого оборудования работают по одному принципу и предназначены для выполнения схожих функций.
Сделать станок будет проще, если для сверлильной головы взять салазки от компьютерного дисковода
Несущим элементом конструкции сверлильного станка для печатных плат является станина-основание, которая также обеспечивает устойчивость оборудования в процессе выполнения сверления. Исходя из назначения данного конструктивного элемента, изготавливать станину желательно из металлической рамки, вес которой должен значительно превышать суммарную массу всех остальных узлов оборудования. Если пренебречь этим требованием, вы не сможете обеспечить устойчивость вашего самодельного станка, а значит, не добьетесь требуемой точности сверления.
Роль элемента, на котором крепится сверлильная головка, выполняет переходная стабилизирующая рамка. Ее лучше всего изготовить из металлической рейки или уголков.
Каретка от привода с прикрепленным самодельным уголком под двигатель
Планка и амортизирующее устройство предназначены для обеспечения вертикального перемещения сверлильной головки и ее подпружинивания
В качестве такой планки (ее лучше зафиксировать с амортизатором) можно использовать любую конструкцию (важно только, чтобы она выполняла возложенные на нее функции). В этом случае может пригодиться мощный гидравлический амортизатор
Если же такого амортизатора у вас нет, планку можно изготовить своими руками либо использовать пружинные конструкции, снятые со старой офисной мебели.
Крепление рычага
Крепление для двигателя монтируют на стабилизирующей рамке. Конструкция такого устройства, в качестве которого может выступать деревянный брусок, хомут и др., будет зависеть от конфигурации и конструктивных особенностей остальных узлов сверлильного станка для печатных плат. Использование такого крепления обусловлено не только необходимостью его надежной фиксации, но также тем, что вы должны вывести вал электродвигателя на требуемое расстояние от планки перемещения.
Выбор электрического двигателя, которым можно оснастить сверлильный мини-станок, собираемый своими руками, не должен вызвать никаких проблем. В качестве такого приводного агрегата можно использовать электродвигатели от компактной дрели, кассетного магнитофона, дисковода компьютера, принтера и других устройств, которыми вы уже не пользуетесь.
Двигатель от фена
В зависимости от того, какой электрический двигатель вы нашли, подбираются зажимные механизмы для фиксации сверл. Наиболее удобными и универсальными из таких механизмов являются патроны от компактной дрели. Если подходящий патрон найти не удалось, можно использовать и цанговый механизм. Подбирайте параметры зажимного устройства так, чтобы в нем можно было фиксировать очень мелкие сверла (или даже сверла размера «микро»). Для соединения зажимного устройства с валом электродвигателя необходимо использовать переходники, размеры и конструкция которых будут определяться типом выбранного электродвигателя.
Миниатюрный цанговый патрон
В зависимости от того, какой электродвигатель вы установили на свой сверлильный мини-станок, необходимо подобрать блок питания
Обращать внимание при таком выборе следует на то, чтобы характеристики блока питания полностью соответствовали параметрам напряжения и силы тока, на которые рассчитан электродвигатель
Схема автоматического регулятора оборотов в зависимости от нагрузки для двигателя на 12 В (нажмите для увеличения)
↑ Внутри CD-привода
Точность подачи не вызывает сомнений — ведь САМ ЛАЗЕР позиционировала! Но для бОльшей надежности (все-таки сверлильная головка потяжелее, чем лазер) нужна была еще одна такая же каретка. К счастью, рядом валялся такой же (или почти)TEAC . С механикой у них, похоже, стандарт. Короче, снимаем с него каретку, устанавливаем рядом с имеющейся, и вот что получилось:
Рис. 1
Рабочий ход этого тандема составляет около 10 мм — вполне достаточно. Можно, конечно, кое-что подпилить, чтобы, сблизив каретки, увеличить ход сверла, но нет смысла — станок предназначен только для сверления плат (по крайней мере, у меня). ПС. Один лазер демонтировать не удалось — так что можно смело в названии станка писать — «лазерный»!
Теперь нужно подумать о станине. Смотрим на шасси этого же дисковода:
Рис. 2
Режем по красным линиям, подрезаем углы по вкусу. Разрез по зеленым линиям пригодится нам потом. Не забываем снять заусенцы — источники травм. В итоге получаем два одинаковых, но симметричных кронштейна:
Рис. 3
Углы проверять не стал — все-таки TEAC
— порядочная фирма. Просверлив необходимые отверстия, собираем станину, ориентируясь на имеющиеся на деталях полочки и уголочки:
Рис. 4
Вид с тыльной стороны (изнутри станка):
Рис. 5
Стрелками указаны места сопряжений деталей. Очень уж эти полочки и уголочки облегчают сборку! Не забываем устанавливать под гайки пружинные шайбы — станок же ведь! Вибрация…
Теперь нужно подумать о сверлильной головке. Сначала хотел приспособить свой ДПР-12-2 27В 5000 об/мин
(для него-то и городил вторую каретку, и, как оказалось, совсем не зря!). Но мой мотор на этой конструкции выглядел, как слон в посудной лавке!
Описание конструкции
В основе конструкции довольно мощный 12ти вольтовый двигатель из Китая. В комплекте с двигателем они продают еще патрон, ключ и десяток сверел разного диаметра. Большинство радиолюбителей просто покупают эти двигатели и сверлят платы удерживая инструмент в руках. Я решил пойти дальше и на его основе сделать полноценный станок под подобные двигатели с открытыми чертежами для самостоятельного изготовления.
Для линейного перемещения двигателя я решил использовать полированные валы диаметром 8мм и линейные подшипники. Это дает возможность минимизировать люфты в самом ответственном месте. Эти валы можно найти в старых принтерах или купить. Линейные подшипники также широко распространены и доступны, так как применяются в 3D-принтерах.
Основная станина сделана из фанеры толщиной 5мм. Фанеру я выбрал потому, что она стоит очень дешево. Как материал, так и сама резка. С другой стороны ничего не мешает (если есть возможность) просто вырезать все те же самые детали из стали или оргстекла. Некоторые мелкие детали сложной формы напечатанны на 3D-принтере.
Для поднятия двигателя в исходное положение использованы две обычные канцелярские резинки. В верхнем положении двигатель сам отключается при помощи микропереключателя.
С обратной стороны я предусмотрел место для хренения ключа и небольшой пенал для сверел. Пазы в нем имеют разную глубину, что делает удобным хранение сверел с разным диаметром.
Но все это проще один раз увидеть на видео:
На нем есть небольшая неточность. В тот момент мне попался бракованный двигатель. На самом деле от 12В они потребляют на холостом ходу 0,2-0,3А, а не два, как говорится в видео.