Редкоземельные металлы

РЕСУРСЫ ЕСТЬ

Что же касается потенциального сырья, его в России достаточно: запасы РЗМ составляют 30% от мировых, то есть второе место по разведанным запасам и первое по прогнозным. РЗМ учтены в рудах 14 месторождений, причём преобладающая часть (60,2%) находится в апатит-нефелиновых рудах Кольского полуострова, при переработке которых РЗМ не извлекаются. Остальные запасы относятся к лопаритовым рудам Ловозёрского месторождения (14,2%), редкоземельно-апатитовым рудам Селигдарского месторождения в Якутии (22,8%) и, как попутные компоненты, редкометалльным рудам Улуг-Танзекского и нефтеносным песчаникам Ярегского месторождения.

— Месторождения в республике Саха очень перспективные, — говорит Андрей Селивановский, — но расположены они за полярным кругом, и строительство там комбината обойдётся в гигантскую сумму.

Месторождение на территории Якутии уникальное. Содержание редких земель в его рудах достигает феноменальных показателей в 12%. При этом разведанные запасы руды составляют 150 млн. т, а прогнозные едва ли не больше всех мировых. Более того, эти руды в значительных количествах содержат редкие металлы, в частности большие концентрации (около 5%) ниобия.

— А вот апатиты Кольского полуострова близко, и они вовсю используются, — продолжает мой собеседник, — из них делается лучшее в мире удобрение. По одной из технологий для получения из апатитов удобрений используется азотная кислота. При растворении в ней апатитов, процентов 80 редких земель переходят в раствор вместе с фосфором. И пропадают в полях. Но есть метод, мы принимали участие в его разработке, при котором после небольших изменений процесса переработки апатитов в удобрения можно организовать извлечение редких земель.

По другой технологии удобрение из апатитов делается посредством растворения в серной кислоте. При этом редкие земли в раствор не переходят, а остаются в отвале, который называется фосфогипсом и образует целые горы. На одном Воскресенском заводе фосфогипса 10–12 млн. т. Однако извлечь редкие земли из него куда сложнее, чем из раствора апатита в азотной кислоте. Это можно сделать, только если государство начнёт финансировать уничтожение отвалов фосфогипса. Заметим, что в апатите элементов среднетяжёлой подгруппы уже 8–9%, что совсем неплохо по мировым стандартам.

Ресурс редкоземельных металлов у России есть, находится он недалеко и уже разрабатывается. Осталось построить разделительное производство, войти в цепочку по переработке апатитов и можно восстановить своё третье место в мире по производству РЗМ.

Павел ОРЛОВ, «Страна РОСАТОМ»

СПРАВКА
Название «редкоземельные элементы» исторически сложилось в конце 18 — начале 19 века, когда ошибочно считалось, что минералы, содержащие элементы двух подсемейств — цериевого (лёгкие — La, Се, Рг, Nd, Sm, Eu) и иттриевого (тяжёлые — Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), редко встречаются в земной коре. В то же время по запасам сырья РЗМ не являются редкими, по суммарной распространённости они превосходят свинец в 10 раз, молибден — в 50 раз, вольфрам — в 165 раз.
Кроме того, РЗМ образуют тугоплавкие, практически не растворимые в воде оксиды. И с этим фактом связана вторая предпосылка для их наименования, ведь такие оксиды в начале 19 века и ранее назывались «землями».
В 1794 году финский химик Юхан Гадолин, исследуя рудные образцы вблизи шведского местечка Иттерби, обнаружил неизвестную до того «редкую землю», которую назвал по месту находки иттрий. Позже немецкий химик Мартин Клапрот разделил эти образцы на две «земли», для одной из которых он оставил имя иттрий, а другую назвал церий (в честь недавно открытой малой планеты Церера и по имени древнегреческой богини). Немного времени спустя шведский учёный Мосандер сумел выделить из того же образца ещё несколько «земель». Все они оказались оксидами новых элементов, получивших название «редкоземельные металлы». К 1907 году химики обнаружили и идентифицировали всего 14 таких элементов. На основе изучения рентгеновских свойств всем им были присвоены атомные номера от 57 (лантан) до 71 (лютеций), кроме 61. В целом на сегодня специалисты выделяют 16 редкоземельных элементов (в список добавились иттрий и скандий).

СПРАВКА

С распадом СССР мы лишились богатейшего источника сырья по иттрию и металлам иттриевой группы, добыча и производство которых были сосредоточены в Киргизии (Киргизский ГМК, месторождение «Кутессай»). Перспективная потребность России в РЗМ может быть удовлетворена за счёт нового предприятия на базе разведанных запасов Томторского месторождения. Его руды содержат в среднем 9–12% оксидов РЗМ, то есть являются их природным концентратом.

Несовместимость и коэффициент распределения.

В этой статье было сделано много замечаний по поводу совместимости и несовместимости элементов, и сейчас предстоит дальнейшие уточнение по поводу этих пунктов. Совместимость и несовместимость элементов в породах вулканического происхождения и геохимии представлены рядом значений, называемых коэффициентом распределения. Коэффициент распределения элемента в специфическом минерале – это выражение его способности к стабильному формированию части кристаллической решетки на протяжении всего минерала. Иначе говоря, коэффициент распределения элемента в отдельном минерале представлен количеством, с которым он входит или выходит в него в процессе нагревания или охлаждения, по сравнению с общей частью минеральной кристаллической решетки.

Коэффициент распределения – не число, которое отличает отдельный элемент от других, как его атомная масса, радиус или заряженность, это число, которое отражает направленность и расположенность элементов к особому способу поведения в специфических геохимических условиях. Эти числа, большей частью, являются обозначением функции ионного радиуса (актуальный физический размер) атома элемента в сравнении с точками кристаллических решеток в минерале, в которые они могут или не могут включаться, комбинируясь с валентностью атома или заряженностью (обычно +3) в отношении с заряженностью соседнего атома, с которым он может реагировать при специфических условиях (например, летучесть кислорода). Некоторые атомы просто не включаются в данные минералы. Это называется «несовместимость». Степень, с которой они не включаются и, соответственно, невозможность их присутствия в минерале, выражается численно.

Элемент с низким коэффициентом в большей степени вымывается при плавлении, а элементы с высоким коэффициентом более расположены к тому, чтобы быть сильно захваченными кристаллической решеткой и быть представленными в минерале. Другими словами, низкий коэффициент для отдельного минерала отражает его несовместимость с элементами, а высокий коэффициент показывает совместимые элементы. Что-либо с коэффициентом больше 1 считается совместимым, а с коэффициентом меньше 1 – несовместимым, хотя такое разделение довольно символическое.

Виды и характеристики

Сами редкие металлы разделены на пять больших групп:

  • Лёгкие: бериллий, литий, рубидий, стронций, цезий.
  • Радиоактивные: актиний, радий, торий, уран и трансурановые элементы.
  • Рассеянные металлы: галлий, гафний, германий, индий, рений, селен, таллий, теллур.
  • Редкоземельные: иттрий, лантан и лантаноиды, скандий.
  • Тугоплавкие металлы: ванадий, вольфрам, молибден, ниобий, тантал, цирконий.

Данное подразделение весьма условно, так как с совершенствованием геологоразведки и развитием промышленности, некоторые металлы уходят из разряда редких элементов. Само понятие «редкости» говорит об их незначительном использовании. Однако новые прогрессивные технологии коренным образом меняют ситуацию.

Источниками получения редких металлов могут служить месторождения, высокоминерализованные воды, рапа солёных озёр, россыпи, а также побочная продукция или отходы основных производств. Редкометаллические руды можно подразделить на непосредственно богатые редкими элементами, и руды других элементов, в которых редкие минералы присутствуют как примеси. Среди комплексных руд можно выделить:

  • вольфраммолибденовые,
  • титан-ниобий-тантал-редкоземельные,
  • уран-ванадиевые,
  • литий-цезиевые,
  • цирконий-ниобиевые.

Примерами непосредственно руд редких металлов являются:

  • Литиевые руды – это сподумен, амблигонит, лепидолит, циннвальдит, петалит.
  • Бериллиевые руды – берилл, бертрандит, фенакит.
  • Титановые руды – ильменит, рутил, ильменорутил, перовскит, сфен.
  • Циркониевые руды – бадделит, циркон.

Бакминстерфуллерен — 150 миллионов долларов за грамм


Изображение предоставлено: Викимедиа Бакминстерфуллерен (также называемый Бакиболл) содержит 60 атомов углерода (с размещенными в них атомами азота). Оксфордский университет работает над этим материалом более 12 лет.

Этот материал может быть использован для создания маленьких и портативных атомных часов, которые были бы наиболее точной в мире формой хронометража. В настоящее время атомные часы имеют размер комнаты. Этот новый наноматериал может уменьшить атомные часы до размера микрочипа и, таким образом, может быть интегрирован в мобильные телефоны. Это также может сделать GPS-навигацию с точностью до 1 миллиметра.

Особенности получения редкоземельных металлов

Извлечение редкоземельных металлов из земли в чистом виде не возможно. Это связано с их высокой химической активностью. В природных условиях они образуют многоатомные сложные соединения, входящие в состав горных пород. Всего на сегодняшний день известно около 250 минералов, содержащих в составе редкоземельные элементы. При этом не более 60 из них имеют промышленное значение. В остальных доля чистого металла составляет менее 5% и их переработка не рентабельна.

Металлы редкоземельной группы очень часто встречаются в одном и том же месторождении. Поэтому при поступлении сырья на завод редкоземельных металлов, сначала проводится исследование на процентное содержание различных элементов в минерале. Полученные результаты помогут определить, какой именно обработке подвергнуть сырье для получения максимальной экономической выгоды.

Получение редкоземельных металлов разделяется на несколько этапов. В первую очередь раскладывают на составные части сложные соединения. Для этого применяются реакции термического разложения. Они позволяют выделить двухатомные соединения металлов, которые подвергаются дальнейшей обработке. Наиболее часто проводят реакцию восстановления хлорида или фторида более активным металлом (кальцием, натрием, литием). Также используют процедуру электролиза, ионной хроматографии или экстракции.

Применение редкоземельных металлов охватывает многие отрасли промышленности. В стекольном производстве применяют оксиды лантана, церия, празеодима и неодима для повышения прозрачности стекла. Также при помощи металлов данной группы изготавливают термостойкие и невосприимчивые к воздействию кислоты стекла. Редкоземельные элементы входят в состав пигментов, применяемых в лакокрасочной промышленности. В автомобильном производстве лантан используется при производстве аккумуляторов для гибридных машин.

В военном деле вещества используются для изготовления взрывчатых веществ. На основе сплавов неодима, самария, иттрия, европия и эрбия производят сверхмощные постоянные магниты.Редкоземельные элементы в качестве присадок добавляют в некоторые виды сплавов для придания им необходимых свойств. В частности данные металлы придают материалу жаростойкость и повышенную защиту от воздействия коррозии. В чистом виде они практически не используются в виду своей дороговизны.

Сфера применения

Производство и потребление редких металлов и элементов растёт с каждым годом. Особую потребность в них испытывают самые перспективные отрасли науки и техники.

Радиоэлектроника

Саму основу полупроводниковых приборов составляют такие химические элементы, как галлий, германий, индий, селен, теллур. В современных мобильных устройствах насчитывается порядка двух десятков редкоземельных металлов. Стоящие на каждом рабочем столе дисплеи мониторов содержат в своём составе европий, иттрий, тербий. На базе ниобия созданы сверхпроводящие материалы. Создание современной электронной лампы невозможно без бериллия, вольфрама, молибдена, циркония и тория.

Приборостроение

Очень широкое применение редкие металлы находят в приборостроении. Это, прежде всего рубидий и цезий – наиболее востребованные материалы при производстве фотоэлементов. Кроме того из редких металлов изготавливают сверхмощные магниты, электровакуумную технику, люминесцентные лампы, солнечные батареи. Множество современных технических средств содержит в своём составе драгоценные материалы: платину, золото, серебро, иридий, палладий, родий. Радиоактивные металлы широко используются в изготовлении приборов для научных исследований и медицины.

Атомная техника

Использование явления радиоактивности в своё время послужило основой создания ядерной энергетики. Реакторы современных атомных электростанций, ледоколов, атомных подводных лодок работают на уране. Кроме того в атомной технике достаточно широко используются: бериллий, цирконий, гафний, ниобий, тантал, ванадий и литий. И это – далеко не предел. Современные исследования термоядерных реакций, а в перспективе и создание новых атомных установок в самых различных отраслях потребуют всё большего привлечения редких минералов и элементов.

Машиностроение

Современное машиностроение имеет в своём арсенале более 60 металлов и тысячи сплавов. Значительную часть из них составляют редкие металлы. Очень часто они выступают в качестве важных добавок в составе сплавов. Именно благодаря таким добавкам, создаются высокопрочные соединения, устойчивые к высоким температурам, химическому и механическому воздействию, коррозии.

Сфера применения редких металлов в машиностроении всеобъемлюща. Они встречаются всюду: начиная от нано технологий – до изготовления космических аппаратов и гигантских судов.

Химическая промышленность

Химическая отрасль немыслима без использования редких металлов и их соединений. Они повсюду: в технологическом оборудовании, среди контрольно-измерительных приборов и непосредственно в самих химических процессах. С помощью катализаторов из редких металлов сегодня мы получаем сахар, спирт, щавелевую кислоту, производим разнообразные виды топлив и технологическое сырьё.

Металлургия

Именно металлургия служит основным проводником редких металлов во все отрасли мирового хозяйства. Ведь лишь благодаря самим металлургическим процессам и получаются готовые изделия этих химических элементов. Но это далеко не всё. Важную роль играют эти минералы и в производстве чёрной и цветной металлургии, позволяя получать металлы и сплавы с заранее заданными свойствами.

РЗЭ: ключ для понимания последовательности геологических процессов в солнечной системе.

Темой для обсуждения в широких кругах РЗЭ стали по причине резко возросшей необходимостью их применения для изготовления высокотехнологичной продукции и «зеленых технологий»

По причине ограниченного производства, недостатка специалистов высокого уровня в Китае и крайней важностью этих материалов для современной культуры и технологий, РЗЭ стали предметом подробного изучения, приоритетным продуктом для США и других экономически развитых государств.
Необходимость изучения РЗЭ в геологии сейчас очень высока и, что немаловажно, продолжает расти. Базовые знания об этих материалах, геологические процессы с их участием, влияющие на ландшафт, роль РЗЭ в современных технологиях и их применение для изучения геологических процессов как на Земле, так и в космосе – все это сейчас одна из важнейших областей для различных наук, чья специализация – геологические процессы различных космических тел

Для астрофизика и астрогеолога эти элементы являются мощным геохимическим инструментом для понимания процессов планетарной дифференциации, вулканических петрогенетических (горнообразующих) процессов в глубинных или первых существовавших породах, которые мы уже не сможем увидеть. В известной степени, распределение несовместимых элементов в породе создает некую капсулу времени геологических процессов, происходивших на ранних и современных стадиях развития солнечной системы. Это окно, которое, несмотря на то, что многое скрыто, показывает, как сейчас развиваются горные породы и минералы, как они распределялись на протопланетах и их ранней среде. Данная статья – обзор исследований на эту тему.

Рынок редкоземельных металлов

В настоящее время рынок редкоземельных металлов в упадке, и Китай планирует ограничить годовое производство до 140 000 метрических тонн, начиная с 2020 года, чтобы попытаться снова поднять цены.

Причины падения цен на редкоземельные металлы

Начнем с супермагнитов.

Неодим – редкоземельный элемент, примерно с концентрацией в земной коре, как свинец и хром, но сосредоточен в высокосортных рудах. В 1982 году Дженерал Моторс и японская компания Сумитомо обнаружили, что смешивание одной четвертой неодима по весу с тремя четвертями железа и бора может сделать самое мощное семейство супермагнетиков тогда известным, Nd2Fe14B и что свойства этих магнитов могут быть дополнительно улучшены путем добавления следов других редкоземельных металлов – празеодима плюс диспрозий или более дорогой тербий.

Китай, обладая большим количеством всех этих элементов и предпочитая добавленную стоимость экспорту сырья, создал индустрию супермагнитов, чьи низкие цены захватили большую часть мирового рынка и закрыли конкурентов. Китай также энергично проводит исследования и разработки, чтобы найти дальнейшее применение своей редкоземельной щедрости.

Даже в 2015 году, на долю Китая приходилось более 80% мирового редкоземельного производства, сейчас около 70 процентов – это неразумный баланс.

Технологические решения по уменьшению спроса

С 2010 года промышленники предупредили, что рынок редкоземельных металлов с монополией Китая на элементы супермагнитов могут сделать растущий глобальный переход на электрические автомобили и ветряные турбины невозможным – потому что их двигатели и генераторы якобы требовали супермагнитов и, следовательно, этих элементов. Некоторые такие сообщения были даже в 2017 году. Но это все подвергается сомнению. Все, что делают такие вращающиеся машины с постоянными магнитами, также может быть сделано или лучше двумя другими видами двигателей, которые не имеют магнитов.

Сейчас двигатели применяют современную управляющую программу и силовую электронику из кремния, самого распространенного твердого элемента на Земле.

Первый вид – это асинхронный двигатель, изобретенный Николой Теслой 130 лет назад и используемый в каждом электромобиле Приус и Тесла сегодня. Без магнитов изготавливают двигатели не только в электрических автомобилях, но также в ветротурбинах, что освобождает тонны неодима. То, что некоторые ветряные турбины и производители используют генераторы с постоянными магнитами, не означает, что другие должны их изготавливать также.

Точно также красные люминофоры в компактных люминесцентных лампах традиционно используют европий. Но эти лампы теперь в значительной степени вытеснены белыми светодиодами, которые используют примерно на 96 процентов меньше европия. Кроме того, новые красные люминофоры не используют редкоземельные металлы, в то время как последний зеленый люминофор сокращает использование тербия более чем на 90 процентов.

Эрбий в волоконно-оптических ретрансляторах – еще один редкоземельный элемент. Эрбий необходим чтобы увеличить емкость волокна. Ширина полосы частот сейчас увеличена путем передачи по мултиплексу и беспроволочными рационализаторствами.

Некоторые гибридные автомобили, такие как Honda Insight 2001 года, использовали никель-металл-гидридные батареи, содержащие лантан, но теперь они в значительной степени заменены более легкими литиевыми батареями, которые обычно не используют лантан. Кроме того, электромобилям с литиевыми батареями требуется в два—три раза меньше батарей по массогабаритным характеристикам.

Лидирующие на рынке литиевые батареи электромобиля в мире, как и их двигатели, вообще не используют редкие металлы. Количество электромобилей в мире растет.  Появляются новые технологии в виде мощных потенциальных заменителей батарей (в частности, графеновые суперконденсаторы).

Использование редкоземельных металлов

Редкоземельные элементы (РЗЭ) представляют собой очень востребованную на сегодняшний день группу элементов. Их используют во многих областях, активно развивающихся в настоящее время.

Очень сложно переоценить значение данных веществ. Новые исследования позволяют предположить, что развитие технологий с применением РЗЭ позволять снизить или даже полностью ликвидировать энергетическую зависимость государств. На их основе разрабатываются технологии будущего в таких сферах как, здравоохранение, оборона, компьютерная промышленность и всевозможные гаджеты для связи. К тому же они позволяют применять «зеленые технологии» (электрические автомобили, очищение воды, солнечная энергия, катализаторы).

Сплав с использованием РЗЭ позволяет создавать несущие конструкции, которые можно использовать в самолетостроении, причем при производстве сверхзвуковых моделей. Данные элементы весьма востребованы в космической отрасли. Иллюминаторы, изготавливаемые при добавлении РЗЭ способны выдерживать просто невероятные механические нагрузки.

Отраслевое потребление редкоземельных металлов в мире

Продукция2010 г.2015 г.
 тыс. т$ млн.тыс. т$ млн.
Катализаторы17,57516,566
Полировальные средства11,58020,050
Стекло14,07012,547
Сплавы12,57512,563
Магниты10,51308,075
Люминофоры6,03004,5158
Керамика3,0402,530

Астат

Астат — самый редкий металл на планете, встречающийся в природных условиях. В земной коре присутствует всего 70 мг астата. Долгое время его считали галогеном (образующим соли в результате реакции с металлами). Но в 2013 году было проведено исследование. Ученые смоделировали свойства астата. Формально, он должен быть металлом, но при этом не выстраивает присущую им кристаллическую решетку. Структура астата должна быть схожа со структурой ртути, но при этом он, вероятно, в нормальных условиях будет не твердым, а жидким.

В лабораториях за все время изучения его свойств удалось получить лишь 0,05 микрограмма самого редкого металла на земле, поэтому его основные характеристики (цвет, плотность) остаются для химиков загадкой.

Астат получают путем облучения висмута с последующим отделением их друг от друга. Все изотопы этого вещества являются активными. Примечательно, что период распада астата составляет чуть больше 8 часов. Это свойство позволяет использовать его в ядерной медицине.

Калифорний из Калифорнии

Калифорний (Cf) на сегодняшний день имеет статус самого редкого и дорогого металла на Земле. Находится под номером 98 в таблице Менделеева. Его называют «камнем надежды». Он имеет серебристо-серый цвет и производится путем длительного облучения плутония. Сам плутоний был получен при бомбардировке урана ядрами тяжелого водорода.

Калифорний был выведен группой ученых во главе с Гленном Сиборгом в 1950 г. В природе его, естественно, не существует. Его созданием занималась команда Калифорнийского университета (откуда и получил свое название металл) города Беркли. Сегодня с ним работают лишь 2 лаборатории. Одна находится в России, другая — в США.

Калифорний является изотопом (изотопы получают искусственным путем). При этом стоимость его просто баснословна — до 10 млн. долларов за грамм. Это неудивительно, ведь мировой запас металла составляет всего 8 граммов. Ежегодно удается получить лишь 20-40 грамм калифорния.

Этот металл является радиоактивным и состоит из 17 изотопов. Самым изученным из них считается калифорний-252. Длительность его полураспада составляет целых 900 лет.

Свойства калифорния ошеломляющие. Применяется преимущественно в медицине и в области ядерной физики. Он является мощным источников нейтронов, поэтому его используют для обработки злокачественных опухолей, которых «не берет» лучевая терапия.

Он также используется для изучения космического пространства — как Луны, так и самых дальних звезд и планет. Он применим и для исследования деления ядер. Кроме этого, калифорний является незаменимым помощником во время добычи полезных ископаемых — он позволяет обнаруживать серебро и золото.

Бомбы, изготовленные с добавлением самого редкого в мире металла, считаются очень мощными. 1 грамм калифорния способен обеспечить часовую деятельность небольшого ядерного реактора.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий