Достоинства и недостатки планетарных передач
Планетарная передача выигрывает у простых зубчатых механизмов аналогичной мощности компактным размером и массой меньшей в 2 — 3 раза. Используя нескольких планетных шестерней, достигается зацепление зубьев на 80%. Нагрузочная способность механизма повышается, а давление на каждый зубец уменьшается.
Кинематическая характеристика планетарного механизма доходит до 1000 с малым числом зубчатых колёс без применения многорядных конструкций. Помимо передачи планетарная схема способна работать как дифференциал.
За счёт соосности валов планетарного механизма, компоновать машины проще, чем с другими редукторами.
Применение планетарного ряда в АКПП снижает уровень шума в салоне автомобиля. Сбалансированная система имеет высокую вибропрочность за счет демпфирования колебаний. Соответственно снижается вибрация кузова.
Недостатки планетарного механизма:
- сложное производство и высокая точность сборки;
- в сателлиты устанавливают подшипники, которые выходят из строят быстрее, чем шестерня;
- при повышении передаточных отношений КПД падает, поэтому приходится усложнять конструкцию.
Читать
Переключение селектора передач АКПП на ходу
Достоинства и недостатки
Широкая область применения прежде всего связана с основными преимуществами механизма. Многие свойства такие же, как у цилиндрического варианта исполнения, так как в обоих случаях применяются шестерни. Преимущества следующие:
- Компактность. Многие модели характеризуются небольшими размерами, за счет чего упрощается установка. Небольшие габаритные размеры также позволяют создавать механизмы с небольшой массой. За счет этого существенно повышается эффективность рассматриваемого устройства.
- Сниженный уровень шума. Это свойство достигается за счет установки конических колес с косым зубом. За счет применения большого количества зубьев также обеспечивается точность хода основных элементов. Даже при большой нагрузке и скорости вращения основных элементов сильного гула не возникает, что и стало причиной широкого распространения планетарных редукторов.
- Малая нагрузка, оказываемая на опоры. Обычные редуктора характеризуются тем, что нагрузка оказывается на вал, который со временем может сорвать. Также нагрузка оказывает влияние на подшипники, повышая степень их износа. Со временем все приведенные выше причины приводят к необходимости выполнения обслуживания.
- Снижается нагрузка на зубья. Это достигается за счет ее равномерного распределения и большого количества задействованных зубьев. Часто встречается проблема, связанная с истиранием рабочей части зубьев. За счет этого они начинают не плотно прилегать друг к другу, последствия подобного явления заключается в повышенном износе и появлении шума.
- Обеспечивается равномерное разбрасывание масла на момент работы. Как и при функционировании любого другого редуктора, в рассматриваемом случае большое значение имеет степень смазки рабочей поверхности.
- Длительный эксплуатационный срок. Особенности расположения сателлитов приводит к взаимному компенсированию оказываемой силы.
- Повышенной передаточное отношение. Этот показатель считается основным. Передаточное соотношение может варьировать в достаточно большом диапазоне.
В целом можно сказать, что есть довольно большое количество причин, по которым применяется именно подобный механизм для передачи вращения. КПД планетарного редуктора относительно невысокое, что можно назвать существенным недостатком подобного варианта исполнения. Кроме этого, коэффициент полезного действия существенно падает при непосредственном использовании устройства, так как со временем оно изнашивается.
Незначительное отклонение в размерах становится причиной уменьшения основных свойств, а также появления серьезных неисправностей.
Виды мотор-редукторов
Сегодня разработано много вариантов мотор-редукторов, различающихся типом мотора, принципом построения механической части и общей геометрией. Фактически все допустимые конфигурации присутствуют в каталогах изготовителей.
По виду механического зацепления разделяют цилиндрические, конусообразные, червячные и планетарные модели. По обоюдному расположению входного и выходного валов рассматривают соосные, параллельные и угловые варианты. Исходя из передаваемых мощностей выделяют модули обыкновенного размера и мини мотор-редукторы. По типу присоединения к процессу, можно встретить варианты с одно- и двухсторонним валом, а еще с пустотелым выходным валом.
Цилиндрические мотор-редукторы
Агрегаты, применяющие традиционные цилиндрические редукторы приобрели огромное распространение, за счёт простоты, надежности и многофункциональности механической части устройства. Их применение возможно в большом спектре оборудования. В зависимости от всей конструкции, цилиндрические мотор-редукторы делаются с соосными или параллельными валами. Кол-во ступенек может изменяться от одной до 6-ти.
По методу расположения шестерен и общей компоновке выделяют вертикальные и горизонтальные модели. Данные устройства отличаются большим коэффициентом полезного действия, долговечностью и практически небольшой стоимостью. В отличии от многих иных вариантов, цилиндрические редукторы как правило не допускают произвольного расположения в пространстве, что существенно уменьшает их область использования.
Конусообразные мотор-редукторы
Устройства, собранные на основе конусообразных шестерен, дают возможность построить угловой конусообразный мотор-редуктор. Его основной особенностью будет перпендикулярное расположение входного и выходного валов. Это ориентирует их на применение в устройствах, требующих смены направления осей. Также конусообразные модели выгодно ставить в конструкциях, предъявляющих ограничение по одному из больших размеров устройства. Редукторы этого типа отличительны более большой ценой, в виду существенной трудности изготовления некоторых деталей. Передаточное отношение конусообразных моделей в большинстве случаев невелико. Для его увеличения, конусообразную и цилиндрическую передачи часто сочетают, результатом чего становится коническо-цилиндрический мотор-редуктор.
Червячные модели
Сегодня, большую популярность получили червячные одноступенчатые мотор-редукторы. В качестве механической передачи в них применяется червячная пара. Она обеспечивает высокое передаточное отношение при сравнительно малых габаритах. Из-за этого стоимость червячных моделей ниже заменителей с иной конструкцией. Среди остальных особенностей необходимо отметить перпендикулярное расположение валов и самостоятельное затормаживание механизма при отсутствии внешнего поступления энергии.
В отличии от цилиндрических и конусообразных моделей, приложение усилия к выходному валу не приводит к проворачиванию механизма. Из-за этого такие редукторы нередко применяют в ответственных решениях и подъемно-транспортных устройствах. Червячные редукторы как правило не требовательны к положению установки. Благодаря герметичному корпусу их можно располагать произвольным образом, благодаря чему данные модели широко используются для модернизации привода станков, промышленных линий и прочих механизмов. Из минусов червячных моделей в большинстве случаев выделяют маленькой КПД и очень высокое тепловыделение.
Планетарные и волновые мотор-редукторы
Благодаря компактности и высоким рабочим моментам, планетарные мотор-редукторы нашли большое применение в маленьких устройствах привода. Высокое передаточное отношение и способность работать с чрезмерными нагрузками, ориентирует их на применение одновременно с серводвигателями промышленных роботов и прочих автоматизированных устройств. Встречаются планетарные модели и общепромышленного использования. Благодаря конструкционным особенностям зубчатой передачи, эти модели мотор-редукторов делаются с соосными валами. Это дает возможность их применять для привода фактически любых механизмов.
Будущим развитием планетарных передач стали волновые редукторы. Они предоставляют большое передаточное отношение, мягкий ход и большую точность позиционирования выходного вала. Из-за этого подобные модели стали основой построения промышленных роботов. Вместе с высокими свойствами, такие типы передач отличительны большими требованиями к изготовлению, а, поэтому, и большой ценой, что значительно сдерживает распространение таких моделей.
Как рассчитать передаточное число
Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.
Расчет без учета сопротивления
В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.
Где u12 – передаточное число шестерни и колеса;
Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.
Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».
При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.
Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.
Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:
Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.
Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.
КПД зубчатой передачи
Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:
- трение соприкасаемых поверхностей;
- изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
- потери на шпонках и шлицах;
- трение в подшипниках.
Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.
Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.
При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.
Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.
Ремонт редуктора своими руками
Ремонт редуктора своими руками является весьма непростой задачей. Так, данный механизм очень непростой и состоит из множества частей. При ремонте своими руками часто можно даже при разборке не ведая, что внутри просто растерять целую кучу маленьких деталей, например, иголки моментально рассыпаются и теряются. Ремонт планетарного редуктора лучше всего оставить профессионалам.
Как и все редукторы, он может быть как одноступенчатым, так и многоступенчатым. Если Вы собираетесь приобрести механизм данного типа, то лучше всего покупать его у проверенных производителей, так как ремонт своими руками очень затруднен, а если он будет часто выходить из строя, то денег на него будет уходить много. В данной статье мы попытались собрать общую информацию по устройствам планетарного типа использующихся для производства автомобилей. Также нужно сказать, что данный вид устройства очень интенсивно внедряется во многие сферы и отрасли благодаря своим очень весомым преимуществам.
Читать также: Технические характеристики стали 09г2с
Обслуживание и ремонт
Сложность рассматриваемого механизма определяет то, что возникает необходимость в своевременном обслуживании и проведении ремонта
Для начала уделим внимание тому, каким образом проводится расчет планетарного редуктора. Среди особенностей этого процесса отметим следующие моменты:
Определяется требуемое число передаточных ступеней. Для этого применяются специальные формулы.
Определяется число зубьев и расчет сателлитов. Зубчатые колеса могут иметь самое различное число зубьев
В рассматриваемом случае их число довольно много, что является определяющим фактором.
Уделяется внимание выбору наиболее подходящего материала, так как от его свойств зависят и основные эксплуатационные характеристики устройства.
Определяется показатель межосевого расстояния.
Делается проверочный расчет. Он позволяет исключить вероятность допущения ошибок на первоначальном этапе проектирования.
Выбираются подшипники
Они предназначены для обеспечения плавного вращения основных элементов. При выборе подшипника уделяется внимание тому, на какую нагрузку они рассчитаны. Кроме этого, не рекомендуется использовать этот элемент без смазки, так как это приводит к существенному износу.
Определяется оптимальная толщина колеса. Слишком большой показатель становится причиной увеличения веса конструкции, а также расходов.
Проводится вычисление того, где именно должны быть расположены оси шестерен. Это проводится с учетом размеров зубчатых колес и некоторых других моментов. Как правило, в качестве основы применяется чертеж, который можно скачать из интернета. Самостоятельно разработать проект по изготовления планетарного редуктора достаточно сложно, так как нужно обладать навыками инженера для проведения соответствующих расчетов и проектирования.
Изготовить самостоятельно рассматриваемую конструкцию достаточно сложно, как и провести ремонт планетарных редукторов. Среди особенностей этой процедуры отметим следующее:
- Процедура достаточно сложна, так как механизм состоит из большого количества различных элементов. Примером можно назвать то, что сразу после разбора все иголки могут высыпаться практически моментально.
- Многие специалисты рекомендуют доверять рассматриваемую работу исключительно профессионалам, так как допущенные ошибки становятся причиной быстрого износа и выхода из строя механизма.
- Ремонт зачастую предусматривает замену шестерен, которые со временем изнашиваются. Примером можно истирание зубьев, изменение размеров посадочного гнезда и многие другие дефекты. Самостоятельно изготовить подобные изделия практически невозможно, так как для этого требуется специальное оборудование.
Чаще всего обслуживание предусматривает добавление масла. Смазка планетарного редуктора позволяет существенно продлить срок службы конструкции, так как соприкосновение и трение металла становится причиной его истирания. Рекомендуется смазывать механизм периодически, так как масло выступает еще в качестве охлаждения. В продаже встречаются специальные смазывающие вещества, которые характеризуются определенными эксплуатационными качествами.
Сегодня ремонтом редукторов занимаются компании, которые специализируются на предоставлении соответствующих услуг. Признаком того, что механизм начинает выходить из строя становится появление сильного шума, вибрации, рывков, нагрев и многое другое. Со временем процесс износа существенно ускоряется, так как металл, находящийся в масле попадает в зацепление шестерен. В большинстве случаев ремонт предусматривает замену всех элементов на новые.
В заключение отметим, что планетарный редуктор характеризуется весьма привлекательными свойствами. Примером можно назвать отсутствие большого количества крепежных элементов, а также равномерное распространение нагрузки. Как ранее было отмечено, редуктор применяется при создании различных узлов транспортных средств.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Планета́рный реду́ктор, дифференциа́льный реду́ктор (от лат. differentia – разность, различие) — один из классов механических редукторов. Редуктор называется планетарным из-за планетарной передачи, находящейся в редукторе, передающей и преобразующей крутящий момент.
[править] Устройство
Планетарная передача
Основные элементы планетарной передачи:
- Солнечная шестерня (англ.sun gear ) — находится в центре.
- Водило (англ.carrier unit ) — жёстко фиксирует друг относительно друга оси несколькихпланетарных шестерён («сателлитов») одинакового размера (англ.planetary gears ), находящихся в зацеплении с солнечной шестерней.
- Кольцевая шестерня (англ.ring gear ) — внешнее зубчатое колесо, имеющее внутреннее зацепление с планетарными шестернями.
При использовании планетарной передачи в качестве редуктора один из элементов фиксируется неподвижно, второй — используется как ведущий (замыкается на звезду, приводимую цепью), а третий — в качестве ведомого (замыкается на корпус втулки). Соединение элементов осуществляется с помощью собачек или роллерного сцепления, уменьшающего шумность. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также того, какой элемент закреплён. Увеличивая количество планетарных передач, можно увеличивать количество скоростей у втулки.
3-скоростная втулка
Взрыв-схема 3-скоростной планетарной втулки (вид сзади): 3 — водило с сателлитами, 4 — кольцевая шестерня, 6 — ось и солнечная шестерня, 7 — привод с шлицами для звездочки
Принцип работы 3-скоростной планетарной втулки, включающей в себя одну планетарную передачу:
- Солнечная шестерня — это ось, она закреплена неподвижно на раме.
- Первая передача (отношение 0.733). Ведомая звезда с помощью привода соединена собачками с кольцевой шестерней. Водило соединено собачками с корпусом втулки. Кольцевая шестерня вращает водило через сателлиты, при этом водило (и корпус втулки) вращается медленнее, чем кольцевая шестерня (и звезда).
- Вторая передача (отношение 1.0). Под действием исполнительного механизма муфта, сжимая возвратную пружину, выдвигает собачки на кольцевой шестерне, и она зацепляется с корпусом втулки. Вращение передается непосредственно с звезды на кольцевую шестерню и далее на корпус втулки — прямая передача. Водило вращается с той же скоростью, что и на первой передаче, но корпус втулки вращается быстрее, поэтому собачки водила стрекочут по корпусу и не оказывают влияния на работу механизма.
- Третья передача (отношение 1.364). Исполнительный механизм толкает муфту дальше, она входит своими шлицами в зацепление с водилом. Тем самым, водило соединяется с ведомой звездой. Собачки на кольцевой шестерне по-прежнему зацеплены с корпусом втулки, но водило теперь вращается в противоположную сторону, ускоряя вращение корпуса втулки по сравнению с ведомой звездой. Собачки стрекочут между водилом и корпусом, а также между приводом и кольцевой шестерней.
Многоскоростные втулки
Взрыв-схема 8-скоростной планетарной втулки (вид сзади): 3 — сдвоенная планетарная передача в сборе, 4 — водило в сборе, 5 — кольцевая шестерня, 8 — ось и солнечная шестерня в сборе, 9 — муфта, 10 — возвратная пружина, 11 — привод с шлицами для звездочки
При увеличении количества планетарных передач, включаемых в различных сочетаниях, можно увеличивать число передаточных отношений втулки (с соответствующим увеличением сложности и цены).
8-скоростная втулка имеет две планетарных передачи. Первая из них (подключается муфтой на 1-4 скоростях) — замедляет вращение втулки на фиксированную величину. Она состоит из 1 кольцевой шестерни, 1 солнечной шестерни и 1 набора сателлитов. Вторая планетарная передача ускоряет движение втулки. Она состоит из 1 кольцевой шестерни, 3 солнечных шестерней (далее — СШ № 2, 3, 4) и 3 наборов сателлитов. При переключении передач, различные солнечные шестерни подключаются собачками, расположенными на оси, и меняют передаточное отношение второй планетарной передачи. 5-я передача втулки — прямая, вращение передается с звездочки на корпус без преобразования потока мощности.
Использование планетарных передач (далее — ПП1 и ПП2) втулки на различных скоростях:
- ПП1 замедляет, ПП2 не используется.
- ПП1 замедляет, ПП2 ускоряет с СШ2.
- ПП1 замедляет, ПП2 ускоряет с СШ3.
- ПП1 замедляет, ПП2 ускоряет с СШ4.
- Прямая передача
- ПП1 не используется, ПП2 ускоряет с СШ2.
- ПП1 не используется, ПП2 ускоряет с СШ3.
- ПП1 не используется, ПП2 ускоряет с СШ4.
Взрыв-схема 11-скоростной планетарной втулки (вид сзади): 7 — водило № 3 в сборе, 8 — солнечная шестерня № 4, 10 — водило № 2 в сборе, 11 — солнечная шестерня № 2, 12 — водило № 1 в сборе, 14 — ось и солнечная шестерня № 1 в сборе, 15 — муфта, 17 — привод с шлицами для звёздочки
юбилей Sturmey-Archer
11-скоростная втулка имеет уже 3 планетарных передачи. Она не имеет прямой передачи, поток мощности преобразуется минимум 1 раз на всех передачах.
Управляющие элементы планетарной передачи
Наличие у любых ПМ и их сборок двух и более степеней свободы может использоваться в некоторых типах ПП в качестве основного функционала (здесь имеются ввиду планетарные дифференциалы, разветвители потоков и суммирующие ПП). Однако для работы ПП в режиме редуктора с одним ведущим звеном и одним ведомым всем остальным свободным основным звеньям необходимо задать определённую угловую скорость (в том числе, возможно, нулевую). Лишь в таком случае лишние степени свободы будут сняты, все свободные основные звенья станут опорными, а вся подающаяся на единственное ведущее звено мощность будет снята с единственного ведомого в полном объёме (с поправкой на КПД ПП). Функцию задания необходимых угловых скоростей свободным звеньям выполняют так называемые управляющие элементы ПМ. Таковых элементов два: фрикционы и тормоза.
Фрикционы соединяют друг с другом два свободных звена ПМ, либо соединяют свободное звено с внешним подводом мощности. В обоих случаях при полной блокировке фрикционы обеспечивают паре соединённых элементов некую одинаковую ненулевую угловую скорость. Конструктивно обычно выполнены в виде многодисковых фрикционных муфт, хотя в отдельных случаях возможны и более простые муфты.
Тормоза соединяют свободные звенья ПМ с корпусом ПП. При полной блокировке тормоза обеспечивают заторможенному свободному звену нулевую угловую скорость. Конструктивно могут быть аналогичны фрикционам — в виде многодисковых фрикционнных муфт; но широко распространены и более простые конструкции — ленточные, колодочные, однодисковые.
Фрикционы и тормоза по принципу своего действия являются идеальными синхронизаторами угловых скоростей соединяемых элементов. Также они выполняют предохранительные функции и при резких ударных нагрузках могут пробуксовывать, переводя динамические нагрузки в работу сил трения. И также они могут выполнять функцию главной муфты сцепления (главного фрикциона), поэтому зачастую в механических трансмиссиях машин с ПКП главная муфта сцепления вообще не применяется. При том, что тормоза в отличие от фрикционов допускают больше вариантов фактического исполнения, конструкция и тех и других может быть совершенно одинаковой, или, по крайней мере, унифицированной, несмотря на существенное функциональное различие фрикционов и тормозов. Помимо фрикционов и тормозов в работе ПП могут быть задействованы автоматически срабатывающие механизмы свободного хода (другое их название — обгонные муфты или автологи). В русскоязычных кинематических схемах планетарных КП фрикционы, тормоза и муфты свободного хода обычно обозначаются буквами Ф, Т и М.