Передаточное число

Значения передаточного числа

Для механической коробки передач, работающей в пятискоростном режиме, передаточные числа находятся в таких диапазонах:

· 1-я передача – от 3 до 4;

· 2-я передача – от 2 до 2,9;

· 3-я передача – от 1,2 до 1,9;

· 4-я передача – от 0,9 до 1,2;

· 5-я передача – от 0,7 до 0,9;

· задний ход – от 3 до 4.

В автоматических коробках передач диапазоны значений несколько шире. Сделано это для того, чтобы в различных режимах силовой агрегат работал динамичнее и более гладко. Кроме того, если в автоматике передаточные числа будут настроены неправильно, то езда на автомобиле станет некомфортной с периодическими рывками и внушительным расходом топлива. Поэтому оптимальными для АКПП считаются значения передаточного числа, расположенные близко к друг другу. При таких параметрах разгон автомобиля будет происходить без неприятных рывков во время переключения скоростей.

Подробнее о передаточном числе будет рассказано в этом видеоролике:

Практический способ определения

Самый точный способ определения передаточного числа заключается в подсчете числа зубцов ведущей и ведомых шестерен. Затем большее число делится на меньшее, что и даёт нужный результат. К примеру, в отечественной модели ВАЗ-2106, количество зубьев ведущего вала — 41, а количество зубьев ведомой шестерни дифференциала — 11. В итоге, поделив одну цифру на другую, получаем: 41 : 11 = 3,9.

Такой способ определения самый точный, но при этом совсем не практичный. Потому что для этого варианта необходимо разобрать редуктор и достать необходимые детали. А это не просто неудобно, это всегда затратно.

Определение частот вращения и вращающих моментов на валах.

Определение частот вращения на валах.

Определяем общее передаточное число привода:

где

Тогда

Так как

к.п.

Тогда передаточное число зубчатой передачи uр.п.=2,303

Частоты вращения на валах имеют следующие значения:

Определение вращающих моментов на валах.

Определим момент на валу электродвигателя:

Момент за ременной передачей будет составлять:

Тогда момент на валу за конической передачей будет равна:

Расчет конической передачи

Выбор материала.

По рекомендации произведем выбор для конической передачи материал и вид термической обработки (таблица 2.1 методических указаний).

Второй вариант– колесо – сталь 40Х; твердость поверхности зубьев 269…302НВ; шестерня – сталь 40Х; твердость поверхности зубьев после закалки ТВЧ 45…50 HRC.

Определим среднюю твердость поверхностей зубьев колес и базовые числа нагружений.

По таблице перевода получаем: HBcp=450

При расчете на изгиб базовое число нагружений принимаем:

Определим действительные числа циклов перемены напряжений:

Рассчитаем время работы передачи:

Общее число циклов перемены напряжения:

Так как N ³ NHO то KHL = 1,0

Определение допускаемых напряжений.

Допускаемое контактное и изгибающее напряжение напряжение.

Допускаемые контактные и изгибающие напряжение получаются умножением

HLFL

Для второго варианта термообработки допускаемое контактное напряжение, которое должно определятся в расчете:

Проектный расчет.

Предварительно найдем следующие коэффициенты:

uн = 0,85. Для режима термообработки II коэффициент KHB = 1

1. Диаметр внешней делительной окружности:

2. Угол делительных конусов колеса и шестерни (2.34):

d2 = arctgu = arctg4 = 75,964°; sind2 = cos d1 =0,97;

Конусное расстояние (2.35)

b= 0,285 × Re = 0,285×241,768=68,9» 70 мм.

3. Модуль передачи. Коэффициент KFb = 1, так как колеса полностью прирабатываются (II вариант термообработки). Для прямозубых колес коэффициент uF.=0,85. Допускаемое напряжение изгиба для колеса F =294 Н/мм 2 (оно меньше, чем для шестерни). После подстановки в формулу (2.37) получаем

Примем модуль me =3 мм.

4. Число зубьев колеса (2.38)

Число зубьев шестерни (2.39)

Округляя, примем z1 = 39.

5. Фактическое передаточное число

Отклонение от заданного передаточного числа (2.40)

6. Окончательные размеры колес.

Углы делительных конусов колеса и шестерни:

Делительные диаметры колес (2.41):

Внешние диаметры колес (2.43):

7. Пригодность заготовок колес:

Условия пригодности заготовок выполняются (см, табл. 2.1).

8. Силы в зацеплении.

Средний диаметр колеса

Окружная сила на среднем диаметре колеса (2.45)

Осевая сила на шестерне, равная радиальной силе на колесе (2.46),

Радиальная сила на шестерне, равная осевой силе на колесе (2.47),

9. Проверка зубьев колес по напряжениям изгиба.

Предварительно определим значение некоторых коэф­фициентов.

Коэффициент

Коэффициент КFV для прямозубых колес при твердости зубьев колеса

Напряжения изгиба в зубьях шестерни (2.51)

Напряжения изгиба зубьев колеса и шестерни меньше допускаемых. Продолжим расчет.

10. Проверка зубьев колес по контактным напряжениям.

Коэффициенты

По формуле (2.52) расчетное контактное напряжение

что меньше допускаемого значения.

На этом силовой расчет конической передачи заканчи­вается.

Для построения компоновочной схемы нужно дополни­тельно определить некоторые размеры валов. Для вала

колеса (3.1)

Так как опорами вала конического колеса должны быть конические роликовые подшипники, то коэффициент перед корнем следует принять равным 6. Тогда диаметр вала

Найдем диаметр dп: dп= d + 2×tцил=71+2×5,1=81,2 мм Выбираем dп= 85 мм

Произведем расчет диаметра буртика dБП= dп + 3×r=85+3×3,5=95,5 мм

Округляем до dK=96 мм

Для вала шестерни (3.4)

Примем стандартное значение d=60 мм;

Принимаем стандартное значение d2=65:

БПп

Размеры других участков валов.

Вала колеса с цилиндрическим концом:

Длина посадочного конца вала lМТ=1,5×d=1,5×71=106,5 мм.

длина промежуточного участка lКТ=1,2×dП=1,2×85=102 мм;

длина ступицы колеса lст= 1,2×dK = 1,2×96 ==115,2 мм.

Примем стандартное значение lст= 120 мм.

Вала конической шестерни с коническим концом:

Длина посадочного конца вала lМБ=1,5×d=1,5×60=90 мм.

длина цилиндрического участка 0,15×d = 0,15×60 ==9 мм

длина резьбового участка 0,4×dП=0,4×65= 26 мм.

диаметр и длина резьбы dР=0,9×(d-0,1×l)= 0,9×(60-0,1×90)=45,9 мм. Принимаем 48 мм

Другие размеры обоих валов выявляются при вычерчива­нии компоновочной схемы.

Выбор — передаточное число

Выбор передаточных чисел основной и дополнительной коробок передач производится при тяговом расчете автомобиля.  

Выбор передаточного числа зависит от требуемой скорости движения автомобиля и мощности двигателя. У легковых автомобилей передаточное число колеблется в пределах от 3 2: 1 до 6 2: 1, у грузовых автомобилей — от 5 2: 1 до 7 5: I, а иногда и выше.  

При выборе передаточного числа следует избегать общих множителей между числом ходов червяка и числом зубьев червячного колеса. В этом случае с помощью цилиндрической фрезы получают более чистую боковую поверхность и более высокую точность в положении начальной окружности червячного колеса, а также более благоприятные условия для работы и меньшего износа червячной передачи.  

Вопрос о выборе передаточного числа мультипликатора представляет собой отдельную задачу.  

Некоторые рекомендации по выбору передаточных чисел помещены в табл. 6.4. Наибольшие значения передаточных чисел следует принимать лишь в крайних случаях, так как передачи с наибольшими значениями i имеют большие габариты.  

Может быть несколько причин, вызывающих желательность выбора передаточного числа у нижнего предела допустимых значений. Например, если нагрузка от трения составляет небольшую часть от общей нагрузки, то зубчатая передача может быть сделана более простой и экономичной.  

К этим значениям и следует стремиться путем выбора передаточного числа кинематической схемы соединения электромагнита с исполнительным устройством при заданной противодействующей характеристике последнего и заданных размерах полюсного наконечника.  

Вторым шагом при предварительном выборе основных параметров электропривода является выбор передаточного числа / редуктора, связывающего основной вал проектируемого механизма с двигателем.  

Приведенные оптимальные передаточные числа являются лишь отправными величинами при выборе рабочего передаточного числа. Последнее выбирается после производства ряда расчетов с различными передаточными числами и сопоставления результатов с учетом максимально допустимой скорости механизма и требуемой мощности двигателя.  

Если для привода используется высокоскоростной двигатель, то возникает проблема выбора передаточного числа механизма, связывающего двигатель с исполнительным звеном.  

Таким образом, отмечая возможность улучшения тягово-сцепных свойств и экономичности автомобилей выбором оптимального передаточного числа межосевого дифференциала, необходимо констатировать, что окончательно эту задачу можно решить после проведения широких экспериментальных исследований по оценке фактических режимов работы автомобилей в различных дорожных условиях и выявлению истинного статистического распределения динамических реакций на осях и крутящих моментов, подводимых к ним, в том числе и при отборе мощности.  

Средние значения КПД отдельных передач приведены в табл. 5.4, а рекомендации по выбору передаточных чисел — в табл. 5.5. Так как передачи с большими передаточными числами имеют большие габариты, их следует применять лишь в крайних случаях.  

Если в системе привода с неизменным потоком возбуждения оптимальное значение передаточного числа редуктора не зависело от полного пути перемещения, то в рассматриваемой — системе эта зависимость — явно имеет место. Следовательно, выбор оптимального передаточного числа редуктора следует производить с учетом гистограммы перемещений рассматриваемого механизма.  

Кривые статической характеристики муфты типа свключено — выключено. а — момент в функции скорости. б — момент в функции сигнала управления.| Видоизмененная характеристика момент — сигнал управления ( с учетом гистерезиса муфты типа включено — выключено.| Кривые нелинейных статических Характеристик, типичные для некоторых муфт вихревых токов и фрикционно-дисковых муфт. а — момент в функции скорости. о — момент в функции сигнала управления.  

Если действительный рабочий цикл совершается в растянутый период времени, то значительное количество тепла может быть удалено путем естественного охлаждения; но если рабочий цикл уплотнен в малый отрезок времени и включает высокие ускорения, то следует выбирать муфту увеличенного размера или прибегать к искусственному охлаждению. Способность муфты управлять заданной нагрузкой рассматривается в связи с выбором передаточного числа зубчатой передачи в § 14 — 7; здесь будет рассмотрена лишь энергия, рассеиваемая в муфте.  

Порядок выбора червячного редуктора

Среди достоинств данного агрегата – обоснованная цена червячного редуктора. Но даже с ее учетом подбор должен быть очень выверенным. Чтобы купить оборудование, которое оптимально впишется в используемую программу технического оснащения, необходимо разобраться с базовыми параметрами выбора червячного редуктора. В данной системе расчетов параметров для определения цены присутствуют такие характеристики, как:

  • передаточное отношение;
  • КПД;
  • количество ступеней;
  • планируемое время запуска;
  • габаритные размеры конструкции.

Определение передаточного числа

Начинается выбор червячного редуктора с расчета передаточного отношения – соотношения зубьев ведомой шестерни с количеством зубьев ведущего червяка. От этого зависит кратность увеличения крутящего момента при движении червяка.

Для расчета передаточного числа (требуемого) с целью правильного выбора червячного редуктора используется формула вида:

U=N вх. / N вых

Где:

  • N вх. – это обороты входного вала электромотора де-факто (по паспорту, количество в минуту);
  • N вых. – требуемое число оборотов тихоходного выходного вала за минуту.

Результаты нужно округлить. После чего можно купить модель, руководствуясь таблицей передаточных чисел для разных вариаций механизмов.

Расчет количества ступеней

Расчет передаточного числа является ключевым и при определении требуемого числа ступеней. Во исполнение последней задачи необходимо подобрать систему, согласно полученному соотношению, из таблицы, приведенной ниже.

Выбор червячного редуктораПередаточные числа
одноступенчатый8–80
двухступенчатый100–4000

Выбор червячного редуктора по габаритам

Грамотный выбор червячного редуктора по габаритным параметрам требует приведение в соответствие параметров мощности, оборотов двигателя с типом приводного механизма. Чтобы определиться, какой типоразмер нужно купить именно вам, используйте формулу:

Т= (9550 * Р * U * N) / (К * N вх.).

Где:

  • Р – производительность используемого электромотора, принимается в кВт;
  • U – расчетный показатель передаточного числа;
  • N – КПД, согласно техническим характеристикам и результатам вычислений;
  • К – коэффициент использования/эксплуатации, принимается в зависимости от условий работы червячного редуктора, согласно таблице (она представлена ниже);
  • N вх. – паспортное количество оборотов двигателя.
Режим использования (согласно ГОСТу 21354-87, а также нормам ГосТехНадзора)ПВ (%)K
Непрерывный1000,7
IТяжелый>630,8
IIСредний<631,0
IIIСредний нормальный401,0
IVЛёгкий251,2
VОсобо лёгкий161,5
Эпизодический (нагрузка без ударов, плюс работа два часа в сутки, причетырех включениях в час)251,8

Продолжительность эксплуатации

Расчет времени включения осуществляется так:

ПВ = (Т / 60) * 100

Где:

  • T – это период эксплуатации, взятый в минутах за час работы по среднему показателю.
  • Результат определяют в процентах.

Важное условие: полученный момент не должен превышать номинального крутящего момента. Последний указан в паспорте (технические характеристики червячного редуктора)

Это необходимо для продолжительной работы валов механизма (во избежание разницы между нагрузками, прикладываемыми де-факто, и предусмотренными в паспорте)

Это необходимо для продолжительной работы валов механизма (во избежание разницы между нагрузками, прикладываемыми де-факто, и предусмотренными в паспорте).

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Модернизация редукторов — стабильная тенденция

В модельном ряду производителей представлены стандартные и модернизированные решения. В усовершенствованных агрегатах сохраняются прежние габариты и размеры присоединений.

Основу модернизации составляют:

  • Стандарты ISO.
  • Блочно-модульные конструкции.
  • Усовершенствованные механизмы защиты редукторов.
  • Модификации зубчатых зацеплений.
  • Модернизация корпусов редукторов, ориентированная на производство монолитных конструкций небольшого веса, характеризующихся высокой теплоотдачей.
  • Применение технологии литья под давлением при производстве корпусов из алюминиевых сплавов.
  • Использование синтетического масла для всего периода эксплуатации редуктора.
  • Отсутствие необходимости в техническом обслуживании приводных механизмов в процессе их эксплуатации.

Непрерывный процесс модернизации способствует улучшению технических характеристик редукторов, расширению их функциональности и вариативности исполнений. Сегодня продукция крупных российских производителей не уступает по качеству иностранным аналогам.

Романов Сергей Анатольевич, руководитель отдела механики компании Техпривод

Устройство ременной передачи

Ведущее и ведомое колесо – это шкивы. Их соединяет приводной ремень. Ведущий шкив — тот, который крутит мотор или другая внешняя сила, а ведомый – следующий за ним. Часто для предотвращения соскакивания ремня на ободе шкива делают канавку или бортики.

Чтобы ремень не проскальзывал, его нужно хорошо натянуть. Кто ездил на велосипеде хорошо знает проблему, что плохо натянутая цепь так и норовит слететь со звездочки, а если перетянешь – трудно ехать и она легко порвется. Для натяжения ремня или устранения его колебаний могут использоваться натяжные и прижимные ролики.

Диаметр ведущего шкива мы обозначим английской буквой d1, а ведомого — буквой d2. Нам это понадобится при расчетах.

Рис. 4. Общая схема устройства ремённой передачи

Ремень является самым дешевым устройством в данном механизме. Но за счет него ремённая передача обеспечивает плавность хода и снижение шума. Такая передача способна амортизировать рывки и снижать нагрузку на мотор. Так, если на циркулярном станке резко заклинит диск при распиливании дубовой доски, электромотор остановится не сразу, а с задержкой за счет упругости ремня и его проскальзывания.

Рассмотрим следующую схему.

Рис. 5. Общая схема устройства ремённой передачи

Ведущая ветвь ремня — та, которая набегает на ведущий шкив. Она при работе передачи испытывает растяжение.

Ведомая ветвь ремня — та, которая сходит с ведущего ремня и набегает на ведомый. Она при работе сжимается и расслабляется.

Сжатие и растяжение двух ветвей компенсируется. Иначе ремень рвется. При переходе с одной ветви на другую ремень упруго сжимается или растягивается. В этих зонах на шкиве происходит упругое скольжение ремня. Из-за изменения величины упругого скольжения передаточное отношение ремённой передачи непостоянное и может увеличиваться или уменьшаться в зависимости от нагрузки. При очень большой нагрузке ремень может упруго скользить по всей поверхности шкива.

Также важно знать про угол обхвата ремнём шкива. Чем больше угол обхвата, тем больше площадь контакта, тем больше полезная сила трения

При большой разнице в диаметрах шкивов этот угол может быть очень маленьким. Ремень при этом может проскальзывать. Чтобы увеличить угол обхвата без увеличения межосевого расстояния можно использовать прижимной ролик (смотри картинку ниже). В таком случае устанавливают ролик на ведомую ветвь, которая расслаблена, иначе ведущая ветвь растянется еще сильнее и износ ремня значительно вырастет.

Рис. 6. Увеличение угла обхвата с помощью прижимного ролика.

Как соотносится возраст человека и кошки позже 12 лет

Считается, что 12 лет для кошки то же самое, что 60-64 года для человека. Звериное становится «пенсионером»: двигается немного и не дюже с охотой, с трудом переносит перемены в жизни, почаще и дольше болеет. Но некоторые кошки остаются бодрыми и энергичными даже в этом возрасте, так же, как и отлично сохранившиеся люди. Пятнадцатилетняя кошка и 76-летний человек приблизительно равны по состоянию здоровья и резерву жизненных сил. Ну а звериные 18-20 лет встречаются с такой же частотой, как и люди-долгожители старше 90 лет

Видео по теме Обратите внимание! При переходе с четырехступенчатой коробки передач на пятиступенчатую вам придется реже переключать передачи, и вы можете увеличить максимальную скорость на всей передаче

Основные неисправности

  • выход из строя подшипника дифференциала — в редукторах подшипники применяются для возможности вращения дифференциала. Это наиболее уязвимая деталь, которая работает в критических нагрузках (скорость, перепады температуры). При износе роликов или шариков, подшипник издает гул, громкость которого растет пропорциональности скорости движения авто. Пренебрежение своевременной замены подшипника грозит заклиниванию шестерен главной пары, впоследствии — к замене всего узла в сборе, включая сателлиты и полуоси;
  • срабатывание зубов ГП и сателлитов. Трущиеся поверхности деталей подвержены износу, с каждой сотней тысяч км пробега зубья пары стираются, увеличивается зазор между ними, приводящий к повышенной вибрации и гулу. Для этого предусмотрена регулировка пятна контакта, за счет подкладывания дистанционных шайб;
  • срезание зубьев ГП и сателлитов — происходит в том случае, если вы часто трогаетесь с пробуксовкой;
  • слизывание шлицевой части на полуосях и сателлитах — естественный износ согласно пробегу авто;
  • проворачивание втулки полуоси — приводит к тому, что автомобиль на любой передаче будет стоять на месте, а редуктор вращаться;
  • течь масла — возможно последствием увеличения давления в картере дифференциала из-за забитого сапуна или вследствие нарушения герметичности крышки редуктора.
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий