Основные характеристики
На сегодняшний день существует множество видов неорганических полимеров, как природных, так и синтетических, которые обладают различными составом, свойствами, сферой применения и агрегатного состояния.
Современный уровень развития химической промышленности позволяет производить неорганические полимеры в больших объемах. Чтобы получить такой материал нужно создать условия повышенного давления и высокой температуры. Сырьем для производства выступает чистое вещество, которое поддается процессу полимеризации.
Полимеры бора
Неорганические полимеры характерны тем, что обладают повышенной прочностью, гибкостью, тяжело поддаются воздействию химических веществ и устойчивы к высоким температурам. Но некоторые виды могут быть хрупкими и не обладать эластичностью, но при этом достаточно прочными. Наиболее известными из них считаются графит, керамика, асбест, минеральное стекло, слюда, кварц и алмаз.
Наиболее распространенные полимеры в основе имеют цепочки таких элементов, как кремний и алюминий. Это связано с распространенностью этих элементов в природе, особенно кремния. Наиболее известные среди них такие неорганические полимеры как силикаты и алюмосиликаты.
Свойства и характеристики разнятся не только в зависимости от химического состава полимера, но и от молекулярной массы, степени полимеризации, строения атомной структуры и полидисперсности.
Большинство неорганических соединений характеризуются такими показателями:
- Эластичность. Такая характеристика, как эластичность, показывает возможность материала увеличится в размерах под воздействием сторонней силы и вернутся в изначальное состояние после снятия нагрузки. Например, каучук способен увеличиться в семь-восемь раз без изменения структуры и различных повреждений. Возврат формы и размеров возможен благодаря сохранению расположения макромолекул в составе, перемещаются лишь отдельные их сегменты.
- Кристаллическая структура. От расположения в пространстве составных элементов, что называется кристаллической структурой, и их взаимодействия зависят свойства и особенности материала. Исходя из этих параметров, полимеры разделяют на кристаллические и аморфные.
Кристаллические имеют стабильную структуру, в которой соблюдается определенное расположение макромолекул. Аморфные состоят из макромолекул ближнего порядка, которые только в отдельных зонах имеют стабильную структуру.
Структура и степень кристаллизации зависит от нескольких факторов, таких как температура кристаллизации, молекулярная масса и концентрированность раствора полимера.
- Стеклообразность. Это свойство характерно для аморфных полимеров, которые при снижении температуры или повышении давления обретают стеклообразную структуру. В таком случае прекращается тепловое движение макромолекул. Температурные интервалы, при которых происходит процесс стеклообразования, зависит от типа полимера, его структуры и свойств структурных элементов.
- Вязкотекучее состояние. Это свойство, при котором происходят необратимые изменения формы и объема материала под воздействием сторонних сил. В вязотекущем состоянии структурные элементы перемещаются в линейном направлении, что становится причиной изменения его формы.
Строение неорганических полимеров
Такое свойство очень важно в некоторых сферах промышленности. Наиболее часто его используют при переработки термопластов с помощью таких методов как литье под давлением, экструзия, вакуум-формирования и других. При этом полимер расплавляется при повышенных температурах и высоком давлении
При этом полимер расплавляется при повышенных температурах и высоком давлении.
Классификации полимерных материалов
Зависимо от происхождения полимеры разделяют на синтетические и природные. Несмотря на востребованность природных составляющих, материалы искусственного происхождения, которые производят на низкомолекулярной основе, благодаря синтезу, пользуются большим спросом.
Различия по химическому составу позволяет делить полимерные материалы на:
- неорганические, у которых нет однотипных соединений, при этом есть органические радикалы, в качестве дополнительных составляющих;
- элементоорганические полимеры, отличаются способностью удерживать в органическом радикальном соединении, атомы неорганики, хорошо сочетающихся с органикой;
- органические, которые используют, как основу для пластмассовых изделий.
Характерным отличием структуры, влияющим на свойства материала оказывает макромолекула. Ее вид позволяет разделить полимеры на:
- плоские;
- ленточного типа;
- разветвленной структуры;
- линейного характера;
- сетчатого типа;
- гребнеобразные полимеры;
- прочие виды.
По свойствам соединений звеньев, полимерные материалы делят по полярности, влияющую на растворимость материалов в разных средах. Ее определяют по разобщению положительных и отрицательных зарядов. Характера этих связей позволяет разделить полимеры на:
- гидрофильные;
- гидрофобные;
- амфильные.
Иначе говоря, можно отнести перечисленные категории к полярным, неполярным или смешанным. Кроме этого, полимеры имеют разные свойства при изменении температуры. Они бывают:
- термопластичные, имеющие свойство размягчения, при увеличении градуса, а при понижении – твердеют;
- термореактивные, подвержены разрушению структурных связей между звеньями.
Явным примером, подчеркивающим различие структуры, будет письмо, отправленное по почте, предварительно заклеенное в конверт. В процессе транспортировки, тщательно склеенные поверхности остаются невредимыми. Но стоит нагреть обработанное место на огне или с помощью раскаленного металлического предмета, как клей утратит свои свойства и конверт откроется.
Полимерные материалы делят на два типа: синтетический (искусственный) и огнеупорный. Синтетика встречается в различных сферах жизнедеятельности человека: в строительстве, промышленности, быту и даже – в одежде. Производство искусственного сырья началось в первые годы ХХ века. Первым запатентованным материалом была бакелитовая смола, которая при нагревании меняла форму.
Современные синтетические материалы подвержены влиянию огня и высоких температур, а некоторые из них могут воспламеняться. Чтобы избежать подобное используют добавки, а также синтезируют сырье с помощью хлора или брома. Галогенированный полимерный материал, который получается после обработки, при сжигании образует газ, способствующий повышению коррозии других материалов. Разнообразие структур полимеров по химическому составу позволяет разделить материалы на несколько видов, которые находят все большее применение в народном хозяйстве.
- Полиэтилен Известен по широко применяемой упаковке различного назначения. Свойства и низкая себестоимость сделала такие материалы популярными в разных отраслях. Различают полиэтилен низкого давления, который обладает прочной структурой молекул и высокого давления, с противоположными свойствами. Эти материалы имеют одинаковы по химическому составу, но различаются по структуре решетки.
- Полипропилен Прозрачный полимер изготовленный методикой экструзии с охлаждением методом полива или другим способом с раздувом. Не контактирует с маслами и жирами, не деформируется при температурных изменениях, пропускает водяные пары. Эти свойства материала применяются в пищевой и строительной отрасли.
- Поливинилхлорид Такие материалы с полимерной основой встречается реже других из-за способности быть хрупким и не эластичным. Был популярен в 60-е годы прошлого столетия, при сжигании образует диоксин. Современные материалы вытесняют эти полимеры за счет более высокой экологичности и улучшения структуры сырья.
- Полиолефин Благодаря разнообразному строению макромолекул, эти полимеры включает в себя составляющие элементы пропилена и полиэтилена. Более половины производимой полимерной продукции относят к полиофелинам. Стойкость к разрыву, нагреву и усадке, позволит в ближайшем будущем увеличить объемы изготовления этого сырья. Тем более, что экологичность, которой обладают такие материалы выше других полимеров, а при производстве и утилизации – не выделяет вредных веществ.
Полипропилен
Еще один распространенный термопластичный полимер – полипропилен. В качестве исходного вещества для производства полимера используют – пропилен.
Имеет твердую, прочную структуру, устойчив к механическим воздействиям и к коррозийным процессам. Непрозрачный, как правило, белого цвета, не растворим в органических растворителях. Температура плавления +175С, а при 140 градусов продукт становится мягким на ощупь.
Полипропилен хорошо выдерживает механические нагрузки, не теряя при этом своих свойств. Необходимо отметить чувствительность материала к воздействию света — под действием солнечных лучей и воздуха полипропилен разлагается, теряет блеск, что приводит к ухудшению его механических и физических свойств.
Существует много сортов полипропилена, которые получаются при добавлении специальных присадок, добавок и каучуков. Он легко поддается механической обработке, удобен в уходе, этим обусловлено широкое использование пропилена в любой отрасли промышленного производства. Один из главных недостатков –слабая устойчивость к низким температурам. При температуре ниже -5С элемент становится хрупким. Таким образом, пригоден для использования внутри отапливаемых и закрытых помещений.
Формулы термопластичных полимеров
Применяется для производства пленок, упаковок, контейнеров для сыпучих продуктов и круп, одноразовой посуды. Из этого материала изготавливают трубы и фитинги, игрушки и канцелярию. При изготовлении изделий из полипропилена используются все известные способы обработки полимеров.
ТПУ/ПУ-подошва – двухслойная
Термополиуретан часто комбинируется с полиуретаном — где ходовой слой из термополиуретана, а промежуточный амортизирующий — из полиуретана низкой плотности. Из ТПУ возможно изготовление обуви с глубоким протектором, крупными грунтозацепами. Спецобувь на подошве из ТПУ/ПУ также сопротивляется скольжению как и ТПУ и лучше, чем изделия из однослойного полиуретана и, тем более, двухслойного; обладает меньшим весом чем однослойный ТПУ , но более тяжелая, чем обувь на подошве из ПУ, но, в то же время, прочностные характеристики на высоте. Такая подошва не сломается и не лопнет на морозе. Полиуретановый слой хорошо термоизолирует спецобувь и хорошо скрепляется с верхом заготовки спецобуви. ТПУ — материал термопластичный, поэтому летом быстро истирается и может плавится на горячих поверхностях, что не позволяет носить такую обувь , например, в горячих цехах. Но для зимы и межсезонья — один из лучших вариантов. Легкая, прочная, может быть с крупными и глубокими грунтозацепами, меньше скользит, но ее стоимость достаточно велика.
Термополиуретан применяется при производстве всесезонных аттракционов, может выдерживать максимальные нагрузки в обоих температурных режимах. Между собой специалисты из «надувного бизнеса» так и называют его «всесезонным материалом» . Повышенная прочность объясняется сложнейшим химическим составом, поэтому для изготовления необходимо затратить достаточное количество дорогостоящих компонентов, что в результате выливается в недешевую стоимость самой конструкции. Высокая цена говорит не только о его надежности круглый год , это еще показатель максимальной пластичности, устойчивости к изнашиванию самой поверхности от абразивного истирания. Для кого-то именно этот аспект является первоочередным: многие стремятся к тому, чтобы аттракцион, даже спустя несколько лет, не менял своего первоначального вида.
Методы обработки
- Литьё/литьё под давлением
- Экструзия
- Прессование
- Виброформование
- Вспенивание
- Отливка
- Сварка
- Вакуумная формовка и пр.
- Механическая обработка
Пластические массы, по сравнению с металлами, обладают повышенной упругой деформацией, вследствие чего при обработке пластмасс применяют более высокие давления, чем при обработке металлов. Применять какую-либо смазку, как правило, не рекомендуют; только в некоторых случаях при окончательной обработке допускают применение минерального масла. Охлаждать изделие и инструмент следует струёй воздуха.
Пластические массы более хрупки, чем металлы, поэтому при обработке пластмасс режущими инструментами надо применить высокие скорости резания и уменьшать подачу. Износ инструмента при обработке пластмасс значительно больше, чем при обработке металлов, почему необходимо применять инструмент из высокоуглеродистой или быстрорежущей стали или же из твердых сплавов. Лезвия режущих инструментов надо затачивать, по возможности, более остро, пользуясь для этого мелкозернистыми кругами.
Пластмасса может быть обработана на токарном станке, может фрезероваться. Для распиливания могут применяться ленточные пилы, дисковые пилы и карборундовые круги.
Сварка
Соединение пластмасс между собой может осуществляться механически (с помощью фигурных профилей, болтов, заклепок и т.д.), химически (склеиванием, растворением с последующим высыханием), термически (сваркой). Из перечисленных способов соединения только при помощи сварки можно получить соединение без инородных материалов, а также соединение, которое по свойствам и составу будет максимально приближено к основному материалу. Поэтому сварка пластмасс нашла применение при изготовлении конструкций, к которым предъявляются повышенные требования к герметичности, прочности и другим свойствам.
Процесс сварки пластмасс состоит в образовании соединения за счёт контакта нагретых соединяемых поверхностей. Он может происходить при определённых условиях:
- Повышенная температура. Её величина должна достигать температуры вязкотекучего состояния.
- Плотный контакт свариваемых поверхностей.
- Оптимальное время сварки — время выдержки.
Также следует отметить, что температурный коэффициент линейного расширения пластмасс в несколько раз больше, чем у металлов, поэтому в процессе сварки и охлаждения возникают остаточные напряжения и деформации, которые снижают прочность сварных соединений пластмасс.
На прочность сварных соединений пластмасс большое влияние оказывают химический состав, ориентация макромолекул, температура окружающей среды и другие факторы.
Применяются различные виды сварки пластмасс:
- Сварка газовым теплоносителем с присадкой и без присадки
- Сварка экструдируемой присадкой
- Контактно-тепловая сварка оплавлением
- Контактно-тепловая сварка проплавлением
- Сварка в электрическом поле высокой частоты
- Сварка термопластов ультразвуком
- Сварка пластмасс трением
- Сварка пластмасс излучением
- Химическая сварка пластмасс
Как и при сварке металлов, при сварке пластмасс следует стремиться к тому, чтобы материал сварного шва и околошовной зоны по механическим и физическим свойствам мало отличался от основного материала. Сварка термопластов плавлением, как и другие методы их переработки, основана на переводе полимера сначала в высокоэластическое, а затем в вязкотекучее состояние и возможна лишь в том случае, если свариваемые поверхности материалов (или деталей) могут быть переведены в состояние вязкого расплава. При этом переход полимера в вязкотекучее состояние не должен сопровождаться разложением материала термодеструкцией.
При сварке многих пластмасс выделяются вредные пары и газы. Для каждого газа имеется строго определённая предельно доступная его концентрация в воздухе (ПДК). Например, для диоксида углерода ПДК равна 20, для ацетона — 200, а для этилового спирта — 1000 мг/м³.
Типы полимеров
По химическому составу различают:
- органические;
- элементоорганические;
- неорганические.
Органические полимеры:
- природные;
- искусственные (модифицированные);
- синтетические.
Природные полимеры
Такие полимеры можно найти в природе. Человек не участвует в производстве таких полимеров. В качестве примера можно привести белки, крахмал, натуральный каучук, хлопок, шерсть и др.
Искусственные полимеры
Чтобы получить такие полимеры, человек проводит химические опыты. Например, чтобы получить модифицированный полимер, который затем будет применён при производстве красок, химики добавляют в раствор стирола в толуоле или ксилоле льняное или касторовое масло и нагревают его.
Пример такого полимера — целлюлоза.
Синтетические полимеры
Произвести такие полимеры можно с помощью химического синтеза (т. е. химическим путём). В синтезе участвуют высокомолекулярные органические продукты. Например, чтобы получить синтетический полимер лавсан нужно поликонденсировать (т. е. провести химический опыт) терефталевую кислоту и этиленгликоль.
Пример — капрон, нейлон, полиэтилен, полипропилен, полистирол, фенолформальдегидные смолы.
Элементоорганические полимеры
Содержат атомы других химических элементов, например кремния, алюминия, титана и др. Выделяют:
- термостойкие полимеры;
- полимеры с высокой электропроводностью и полупроводниковыми свойствами;
- вещества с высокой твёрдостью и эластичностью;
- биологические активные полимеры и др.
Химики получают такие полимеры при взаимодействии определённых органических веществ с солями или заменяя некоторые атомы углерода в молекулах на другие составляющие. Пример — полисилоксаны, полититаноксаны и др.
Неорганические полимеры
Полимеры, молекулы которых построены из неорганических боковых цепей (или неорганических радикалов). Неорганические полимеры можно обнаружить в составе земной коры.
Полимеры могут отличаться составом мономерных звеньев. Мономерное звено — это составная часть макромолекулы полимера. Различают:
- гомополимеры;
- гетерополимеры (или сополимеры).
Гомополимеры
Это такие полимеры, у которых одинаковые мономерные звенья. Например: полихлорвинил, поливинилацетат и полистирол.
Гетерополимеры
Это полимеры, которые имеют различные мономерные звенья. Например: сополимер хлористого винила с винилацетатом, сополимер стирола с бутадиеном.
Полимеры могут также подразделяются также на карбоцепные (или гомоцепные) и гетероцепные полимеры.
Гетероцепные полимеры
Главные цепи макромолекул таких полимеров включают не только атомы углерода, но ещё и атомы кислорода, азота и серы. Например: простые эфиры (например, полиэтиленгликоль), сложные эфиры (глифталевые смолы, полипептиды (белки) и др.).
Полимеры также могут подразделяться в зависимости от расположения мономерных цепей в пространстве. Различают:
- стереорегулярные (полимеры с линейной структурой);
- нестереорегулярные (или атактические).
Строение макромолекул полимеров может быть различным. Таким образом, есть полимеры:
- линейные;
- разветвлённые;
- лестничные;
- трёхмерные сшитые (сетчатые, пространственные).
Полимеры можно получить разными способами:
- если полимер получают с помощью поликонденсации, то такой полимер называют поликонденсационным (или реактопластами);
- если с помощью полимеризации — речь идёт о полимеризационном полимере.
В зависимости от реакции полимера на нагревание выделяют:
- термопластичные (полиэтилен, поливинилхлорид, полистирол);
- термореактивные полимеры (полиэфиры, эпоксидные, меламиновые и фенольные смолы).
Полимеры: свойства и классификация
Самая распространенная классификация полимеров по их составу:
- высокомолекулярное органическое;
- элементоорганическое;
- неорганическое высокомолекулярное.
Классификация полимеров по происхождению:
- природное происхождение, в естественной среде у природных полимеров (основополагающие в этом виде – полимеры белков, где мономер – аминокислота, полисахариды);
- искусственное происхождение у высокомолекулярных веществ- измененные химически модифицированные природные вещества (так из целлюлозы делается пластмасса);
- добытые синтетическим путем, используя полимеризацию или поликонденсацию различной структуры и длины. От длины цепочки зависит свойство и применение полимера.
Читать также: Как ощипать гуся с помощью утюга
Располагаться мономеры в пространстве могут по разному, отсюда различия в структурах. Она может быть:
Смотрите видео о том, что такое полимеры.
Линейная структура может быть прямой цепочкой, протянувшейся зигзагом или спиралью. Участки цепи повторяются и прочно соединяются между аналогичными участками такой же цепи.
Характеризующая особенность первой структуры – обладание гибкостью. Отсюда особенность продуктов – высокая эластичность и малая изменяемость структуры при низких температурах, отсутствует хрупкость, ломкость на морозе. (Например, полиэтилен).
Во второй структуре участвует две цепочки, химически связанные между собой. Свойства данного вида полимеров: Жесткость, выносливость высоких температур и нерастворимость в растворителях органики.
Пространственное соединение образуется из не мелких мономеров, но целых молекул поперечно. Внешне это строение напоминает сетку с ячейками разного размера. Жесткость и теплостойкость в этом соединении значительно выше, чем у линейной структуры.
Фторопласты
Получают полимеризацией непредельных галоидных производных этилена:
n × (СF2 = СF2) -> …-СF2 – СF2 – СF2 – СF2 -…
тетрафторэтилен фторопласт (тефлон)
Фторопласты белого цвета имеют плотность 2,1…2,3 г/см3, белого цвета. Абсолютная стойкость к действию агрессивных сред (концентрированная HNO3, царская водка, щелочи, окислители). Обладает большой эластичностью, морозостойкостью, диэлектрическими свойствами.
Фторопласт-4 имеет σв = 16…25 МПа, d= 250…300 %, размягчается при нагреве выше 400 С, может эксплуатироваться в интервале температур от минус 195 С до 250 С. Является аморфно-кристаллическим полимером. Практически он разрушается только под действием расплавленных щелочных металлов и элементарного фтора, кроме того, пластик не смачивается водой. Это наиболее высококачественный диэлектрик. Имеет очень низкий коэффициент трения (f = 0,04), который не зависит от температуры. При высокой температуре нагрева выделяется токсичный фтор. Применяют для изготовления труб, вентилей, кранов, насосов, уплотнительных прокладок, антифрикционных покрытий на металлах (подшипники, втулки).
Фторопласт-3 — эмульсионный полимер трифтормонохлорэтилен (-СF2 = СFСl-) × n — Фторлон — 3. Введение атома хлора снижают диэлектрические свойства, но появляется пластичность.
По химической стойкости сходен с Фторопластом-4, но более прочен и менее термостоек, работает от минус 195 С до 70 С.
Фторопласт-3М обладает большей теплостойкостью — до 170 С, более эластичен и легче формуется, чем Фторопласт-3. Изготавливают трубы, шланги, клапаны, защитные покрытия металлов и др.
Сварка пластмасс
Сварке подвергаются только так называемые термопластичные пластмассы (термопласты), которые при нагревании становятся пластичными, а после охлаждения принимают первоначальные вид и свойства. Кроме них, существуют термореактивные пластмассы, которые изменяют свои свойства при нагреве. Нагревать пластмассы при сварке следует не выше температуры их разложения, т. е. в пределах 140—240 °С.
Пластмассы можно сваривать различными способами:
- нагретым газом;
- контактной теплотой от нагревательных элементов;
- трением;
- ультразвуком (рис. 8).
Основные условия для получения качественного соединения пластмасс при сварке следующие:
- Диаметр присадочного прутка не должен превышать 4 мм для достаточно быстрого его нагрева и обеспечения необходимой производительности сварки.
- Сварку следует вести по возможности быстро во избежание термического разложения материала.
- Необходимо точно выдерживать температуру сварки во избежание недостаточного нагрева или перегрева свариваемого материала.
На рис. 8 показано оборудование и методы сварки пластмасс.
Рис. 8. Сварочный экструдер для сварки пластмасс, полимеров
Механические свойства пластмасс
Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).
Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)
Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.
Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).
Рис. 7. Детали конструкционного применения из пластмасс
В таблице 3 указаны механические свойства термопластов общего назначения.
Таблица 3.
Несколько примеров по обозначению (см. табл. ниже).
ПЭВД | Полиэтилен высокого давления | ГОСТ 16337-77 |
ПЭНД | Полиэтилен низкого давления | ГОСТ 16338-85 |
ПС | Полистирольная плёнка | ГОСТ 12998-85 |
ПВХ | Пластификаторы | ГОСТ 5960-72 |
АБС | Акрилбутодиентстирол | ГОСТ 8991-78 |
ПММА | Полиметилметаакрилат | ГОСТ 2199-78 |
Это интересно: Томпак — состав сплава и характеристики — состав, характеристики, производство, виды
Материалы на основе пластмасс
Мебельные пластмассы
Пластик, который используют для производства мебели, получают путём пропитки бумаги термореактивными смолами. Производство бумаги является наиболее энерго- и капиталоемким этапом во всем процессе производства пластика. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные, которые используются для пропитки крафт-бумаги, и меламиноформальдегидные, которые используются для пропитки декоративной бумаги. Меламиноформальдегидные смолы производят из меламина, поэтому они стоят дороже.
Мебельный пластик состоит из нескольких слоёв. Защитный слой — оверлей — практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меламиноформальдегидной смолой. Следующий слой — декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой — компенсирующий (крафт-бумага, пропитанная меламиноформальдегидными смолами). Этот слой присутствует только у американского мебельного пластика.
Готовый мебельный пластик представляет собой прочные тонированные листы толщиной 1-3 мм. По свойствам он близок к гетинаксу. В частности, он не плавится от прикосновения жалом паяльника, и, строго говоря, не является пластической массой, так как не может быть отлит в горячем состоянии, хотя и поддается изменению формы листа при нагреве. Мебельный пластик широко использовался в XX веке для отделки салонов вагонов метро.
Полипропилен
Еще один распространенный термопластичный полимер – полипропилен. В качестве исходного вещества для производства полимера используют – пропилен.
Имеет твердую, прочную структуру, устойчив к механическим воздействиям и к коррозийным процессам. Непрозрачный, как правило, белого цвета, не растворим в органических растворителях. Температура плавления +175С, а при 140 градусов продукт становится мягким на ощупь.
Полипропилен хорошо выдерживает механические нагрузки, не теряя при этом своих свойств. Необходимо отметить чувствительность материала к воздействию света — под действием солнечных лучей и воздуха полипропилен разлагается, теряет блеск, что приводит к ухудшению его механических и физических свойств.
Существует много сортов полипропилена, которые получаются при добавлении специальных присадок, добавок и каучуков. Он легко поддается механической обработке, удобен в уходе, этим обусловлено широкое использование пропилена в любой отрасли промышленного производства. Один из главных недостатков –слабая устойчивость к низким температурам. При температуре ниже -5С элемент становится хрупким. Таким образом, пригоден для использования внутри отапливаемых и закрытых помещений.
Формулы термопластичных полимеров
Применяется для производства пленок, упаковок, контейнеров для сыпучих продуктов и круп, одноразовой посуды. Из этого материала изготавливают трубы и фитинги, игрушки и канцелярию. При изготовлении изделий из полипропилена используются все известные способы обработки полимеров.
Полимерные материалы для пола
Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.
Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.
Плиточные материалы, изготовленные на основе полимерных компонентов, обладают весьма малой истираемостью, химической стойкостью и долговечностью. В зависимости от типа сырья, этот вид полимерной продукции делят на кумаронополивинилхлоридные, кумароновые, поливинилхлоридные, резиновые, фенолитовые, битумные плитки, а также древесностружечные и древесноволокнистые плиты.
Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.
Свойства
Основные механические характеристики пластмасс те же, что и для металлов. Пластмассы характеризуются малой плотностью (0,85—1,8 г/см³), чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическим растворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др., а также варьированием сырья, например, использование соответствующих полиолов и диизоцианатов при получении полиуретанов.
Твёрдость пластмасс определяется по Бринеллю при нагрузках 50—250 кгс на шарик диаметром 5 мм.
Теплостойкость по Мартенсу — температура, при которой пластмассовый брусок с размерами 120 × 15 × 10 мм, изгибаемый при постоянном моменте, создающем наибольшее напряжение изгиба на гранях 120 × 15 мм, равное 50 кгс/см², разрушится или изогнётся так, что укреплённый на конце образца рычаг длиной 210 мм переместится на 6 мм.
Теплостойкость по Вика — температура, при которой цилиндрический стержень диаметром 1,13 мм под действием груза массой 5 кг (для мягких пластмасс 1 кг) углубится в пластмассу на 1 мм.
Температура хрупкости (морозостойкость) — температура, при которой пластичный или эластичный материал при ударе может разрушиться хрупко.
Для придания особых свойств пластмассе в неё добавляют пластификаторы (силикон, дибутилфталат, ПЭГ и т. п.), антипирены (дифенилбутансульфокислота), антиоксиданты (трифенилфосфит, непредельные углеводороды).
Полистирол
Продукт полимеризации стирола при 70 С в присутствии катализаторов:
Полистирол -твердый, жесткий, прозрачный, аморфный полимер. Удобен для механической обработки, хорошо окрашивается, растворим в бензоле. Недостатками являются невысокая теплостойкость, склонность к старению, образованию трещин. Набухает в бензине. Стоек к действию щелочей, солей, низших спиртов, минеральных масел. Полистирол марки Д имеет плотность 1,05 г/см3, массу 106, σв = 35…40 МПа, d = 0,6 %. Очень хрупкий, но имеет исключительно высокие диэлектрические свойства и полную влагостойкость.
Ударопрочный полистирол представляет собой блоксополимер стирола с каучуком (УПС). Он имеет в 3…5 раз более высокую ударную вязкость и в 10 раз более высокое относительное удлинение по сравнению с обычным полистиролом. Используется в основном в электротехнике для изготовления электроизоляции, сосудов для воды и химикатов, труб и др.