Предел прочности стали

Классификация параметра

Материал обладает временным сопротивлением в ответ на воздействия разного характера, поэтому характеристику классифицируют на несколько групп. Усилия, которым подвергается заготовка или конструктивный элемент:

  • Растяжение. Изделие тянут за края с помощью специальной машины.
  • Кручение. Предмет помещается в условия, при которых работает крутящий вал.
  • Изгиб. Заготовку сгибают и разгибают в нескольких направлениях.
  • Сжатие. На материал давят попеременно с разных сторон.

У одного и того же материала ПП может различаться. В качестве примера можно привести сталь. Она используется чаще, чем другие сплавы, потому что стальные конструкции показали себя как наиболее прочные, долговечные и устойчивые к неблагоприятным факторам. При этом они надёжны и не выделяют в атмосферу вредных веществ.

Существует несколько марок стали. Они производятся по разным технологиям, и в зависимости от этого различаются характеристики заготовок и конструкций. У обычных марок ПП составляет 300 Мпа. По мере увеличения содержания углерода прочность увеличивается. Самые твёрдые марки имеют показатель 900 МПа. Факторы, от которых зависят прочностные характеристики:

  • количество полезных и нежелательных примесей;
  • способ термической обработки (криообработка, закалка, отжиг).

Механические свойства металлов, сталей и сплавов. Прочность.

Прочность – способность материала сопротивляться деформациям и разрушению.

Испытания проводятся на специальных машинах, которые записывают диаграмму растяжения, выражающую зависимость удлинения образца Δl (мм) от действующей нагрузки Р, то есть Δl = f(P). Но для получения данных по механическим свойствам перестраивают: зависимость относительного удлинения Δl от напряжения δ.

Диаграмма растяжения материала

Рис 1: а – абсолютная, б – относительная; в – схема определения условного предела текучести

Проанализируем процессы, которые происходят в материале образца при увеличении нагрузки: участок оа на диаграмме соответствует упругой деформации материала, когда соблюдается закон Гука. Напряжение, соответствующее упругой предельной деформации в точке а, называется пределом пропорциональности.

Механические свойства металлов, сталей и сплавов. Предел пропорциональности.

Предел пропорциональности (σпц) – максимальное напряжение, до которого сохраняется линейная зависимость между деформацией и напряжением.

При напряжениях выше предела пропорциональности происходит равномерная пластическая деформация (удлинение или сужение сечения). Каждому напряжению соответствует остаточное удлинение, которое получаем проведением из соответствующей точки диаграммы растяжения линии параллельной оа.

Так как практически невозможно установить точку перехода в неупругое состояние, то устанавливают условный предел упругости, – максимальное напряжение, до которого образец получает только упругую деформацию. Считают напряжение, при котором остаточная деформация очень мала (0,005…0,05%). В обозначении указывается значение остаточной деформации (σ0.05).

Механические свойства металлов, сталей и сплавов. Предел текучести.

Предел текучести характеризует сопротивление материала небольшим пластическим деформациям. В зависимости от природы материала используют физический или условный предел текучести.

Физический предел текучести σm – это напряжение, при котором происходит увеличение деформации при постоянной нагрузке (наличие горизонтальной площадки на диаграмме растяжения). Используется для очень пластичных материалов.

Но основная часть металлов и сплавов не имеет площадки текучести.

Условный предел текучести σ0.2 – это напряжение вызывающее остаточную деформацию δ = 0.20%.

Физический или условный предел текучести являются важными расчетными характеристиками материала. Действующие в детали напряжения должны быть ниже предела текучести. Равномерная по всему объему пластическая деформация продолжается до значения предела прочности. В точке в в наиболее слабом месте начинает образовываться шейка – сильное местное утомление образца.

Механические свойства металлов, сталей и сплавов. Предел прочности.

Предел прочности σв – напряжение, соответствующее максимальной нагрузке, которую выдерживает образец до разрушения (временное сопротивление разрыву).

Образование шейки характерно для пластичных материалов, которые имеют диаграмму растяжения с максимумом. Предел прочности характеризует прочность как сопротивления значительной равномерной пластичной деформации. За точкой В, вследствие развития шейки, нагрузка падает и в точке С происходит разрушение.

Истинное сопротивление разрушению – это максимальное напряжение, которое выдерживает материал в момент, предшествующий разрушению образца (рисунок 2).

Истинное сопротивление разрушению значительно больше предела прочности, так как оно определяется относительно конечной площади поперечного сечения образца.

Истинная диаграмма растяжения

Fк – конечная площадь поперечного сечения образца.

Истинные напряжения Si определяют как отношение нагрузки к площади поперечного сечения в данный момент времени.

При испытании на растяжение определяются и характеристики пластичности.

Легирующие добавки в составе сплавов

Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:

  • Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
  • Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
  • Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
  • Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
  • Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
  • Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.

Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Современное производство нуждается в большом количестве прочных стальных изделий. При строительстве мостов, домов, сложных конструкций используют различные стали. Одним из главнейших вопросов является расчет прочности металла и значения величины напряжения стальной арматуры. Чтобы конструкции служили долго и были безопасны необходимо точно знать предел текучести стального материала, который подвергается основной нагрузке.

Марочная прочность

Марочная прочность бетона обозначается латинской литерой «М» и определяется по стандарту СЭВ1406—78. В рамках этой классификации бетонная смесь делится на тяжелую и мелкозернистую. Она позволяет определить, насколько качественно цементный камень соединяется с частичками заполнителей. О достоверности результатов свидетельствует монолитность образованных конструкций. Для упорядочивания этой классификации также разработана таблица. В ней подаются численные характеристики для расчета средних результатов образцов во время испытаний. Марочная иерархия является менее эффективной, чем классовая, и все реже используется в архитектурно-строительном деле.

Предел текучести стали

Предел текучести сталей в ГОСТах указывается с пометкой «не менее», единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.

Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:

  • Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм2 или 25 кгс/мм2.
  • Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм2 или 36 кгс/мм2.

Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:

  • Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм2 или 41 кгс/мм2; прокат размером от 16 до 40 мм — не менее 355 Н/мм2 или 36 кгс/мм2; прокат размером от 40 до 100 мм — не менее295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм2 или 50 кгс/мм2; прокат размером от 16 до 40 мм — не менее 430 Н/мм2 или 44 кгс/мм2; прокат размером от 40 до 100 мм — не менее 375 Н/мм2 или 38 кгс/мм2.

*Механические свойства стали 30 распространяются на прокат размером до 63 мм.

Предел текучести стали 40Х (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм2 или 80 кгс/мм2.

Предел текучести стали 09Г2С (ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая). Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм2 (27 кгс/мм2) до 345 Н/мм2 (35 кгс/мм2). Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).

Предел текучести стали 3. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм2 (не менее).

Усталость стали

Второе название — предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений — 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени — нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Легирующие добавки в составе сплавов

Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:

  • Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
  • Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
  • Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
  • Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
  • Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
  • Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.

Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Построение диаграммы деформирования при сжатии связано с рядом трудностей.

Первая из них состоит в том, что при сжатии стержня может наступить потеря устойчивости (искривление оси стержня). Проблема устойчивости стержней будет изучаться в дальнейшем, а сейчас отметим, что для устранения потери устойчивости надо применять образцы с малым отношением . Однако по мере уменьшения этого отношения возрастает влияние на результаты опытов сил трения, возникающих между опорными поверхностями.

Читать также: Проходной прямой резец назначение

На рис. 4.4, а показаны образцы для испытаний на сжатие. Наиболее простой способ — передача усилия через плоские торцы. Образец должен быть обработан достаточно точно, с тем чтобы получить равномерное распределение напряжений сжатия по торцам. Для уменьшения влияния сил трения торцы смазываются консистентными смазками (вазелином, парафином и т. п.). Другой способ компенсации сил трения состоит в применении полбгих конических поверхностей на торцах (рис. 4.4, б).

Для проведения последовательных испытаний на растяжение и сжатие используются трубчатые образцы (рис. 4.4, в), причем усилие на тело образца передается с помощью резьбы.

Рис. 4.4. Образцы материалов для испытания на сжатие

Основная область применения испытаний на сжатие — исследование прочности и деформации хрупких материалов, так как они используются в первую очередь для элементов конструкций, работающих на сжатие. Испытание на сжатие широко применяется для исследования строительных материалов (бетона, кирпича, камня и т. п.). В качестве образцов обычно применяют кубики размером ребра 30—40 мм.

Для хрупких материалов разрушение происходит при деформации всего несколько процентов, и основное значение имеет предел прочности на сжатие. На рис. 4.5 приведены два типа разрушения строительных материалов при сжатии. В нервом случае (рис. 4.5, а) (на торцах образца действуют силы трения) разрушение связано с действием касательных напряжений. Во втором случае (рис. 4.5, б) (силы трения по торцам малы) образуются продольные трещины, вызываемые деформацией растяжения в поперечном направлении. Следует отметить, что для хрупких материалов прочность на сжатие во много раз больше прочности на растяжение.

Рис. 4.5. Разрушение хрупких строительных материалов при сжатии: а — торцы образца не смазаны; б — торцы смазаны парафином

При испытании на сжатие пластичных материалов происходит увеличение поперечных сечений («расплющивание») образца (рис. 4.6). Четко определяется предел текучести, который для большинства пластичных конструкционных материалов оказывается таким же, как и при растяжении. Последнее объясняется тем, что ответственными за появление пластических деформаций являются касательные напряжения, которые при действии растягивающих и сжимающих усилий различаются только знаком.

Рис. 4.6. Расплющивание пластичных материалов при сжатии

Предел прочности при сжатии пластичных материалов при одноосном сжатии не выявляется. При всестороннем сжатии материалы выдерживают очень высокие давления, причем обычно хрупкие материалы (мрамор и др.) становятся пластичными.

Можно считать, что пластичные материалы выдерживают очень большие сжимающие напряжения, а разрушение может наступить в результате наличия в наклонных площадках – касательных напряжений.

Прочностные характеристики материалов в расчетах по методу предельных состояний.

Базовым параметром сопротивления материалов силовым воздействиям служит нормативное сопротивление

, устанавливаемое с учетом случайной изменчивости прочностных (точнее, механических) свойств. Стандартом установлено, чтообеспеченность значений нормативных сопротивлений должна быть не менее 0,95 Для разных конструкционных материалов и грунтов нормативные значения прочностных и деформационных характеристик установлены по различным наиболее существенным показателям, например:

— для «мягких» арматурных сталей

с физическим пределом текучести — по установленному соответствующим ГОСТом браковочному минимуму предела текучести;

— для «твердых» сталей

без площадки текучести — по значению условного предела текучести;

— для конструкционных сталей углеродистой и повышенной прочности

, а также для алюминиевых сплавов — по пределу текучести;

— для конструкционных сталей без площадки текучести, а также в случаях, когда по характеру работы конструкции несущая способность определяется не пластичностью, а прочностью, нормативное сопротивление определяется по временному сопротивлению;

— для бетона

нормативное сопротивление определяется по результатам испытаний стандартных образцов в 28-дневном возрасте:

КУБОВ — класс бетона;

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Расчет стоимостиГарантииОтзывы

ПРИЗМ — нормативное сопротивление сжатию;

ВОСЬМЕРОК, ЦИЛИНДРОВ — на раскалывание;

БАЛОК на изгиб — нормативное сопротивление растяжению.

— для древесины

— по результатам испытаний стандартных образцов без пороков («ЧИСТЫХ»);

— для пластических масс

— то же, однако, для разных видов пластмасс размеры образцов различны.

Соответствующими стандартами установлены также другие нормативные характеристики материалов (объемная масса, модули упругости и сдвига, коэффициенты трения, сцепления, характеристики ползучести, усадки, температурного расширения, усушки, набухания и другие.).

Для грунтов

естественных оснований определяющими характеристиками служат нормативные значения угла внутреннего трения, удельного сцепления, модуля деформации. Для скальных и вечномерзлых грунтов этими характеристиками служат сопротивление одноосному сжатию и сдвигу.

Отличительная особенность нормативных прочностных характеристик грунтов заключается в том, что они принимаются по среднестатистическим значениям, а не с обеспеченностью 0,95 как для конструкционных материалов.

Возможные отклонения нормативных характеристик конструкционных материалов и грунтов в неблагоприятную сторону учитываются коэффициентами надежности по материалу и грунту

. Эти коэффициенты учитывают ряд факторов, не проявляющихся при стандартных испытаниях, но встречающихся в практике эксплуатации в «обычных» условиях (в отличие от «особых» условий, учитываемых дополнительно коэффициентом условий работы).

Коэффициент всегда больше единицы и для разных материалов колеблется в широких пределах. Наименьшее значение = 1,025 установлено для стального проката по некоторым ГОСТам и ТУ. Для высокопрочных сталей значение повышается до 1,15. Наибольшее общее значение = 6 принято для сопротивления древесины растяжению вдоль волокон при нормировании характеристики по результатам испытаний мелких стандартных образцов. Если исключить коэффициент длительного сопротивления, равный 0,66, то в чистом виде для этого случая = 4.

Для бетона коэффициент ближе к меньшим значениям, = 1,3 при сжатии и = 1,5 при растяжении. Для большинства пластмасс = 1,3 — 1,7.

Такие различия объясняются разным набором учитываемых факторов. Для конструкционных сталей этот коэффициент учитывает только выборочный характер контроля (возможность случайного попадания в конструкции стали с пониженными характеристиками). Для древесины же коэффициент надежности по материалу учитывает масштабный эффект (малая доля) и влияние пороков структуры (сучки, косослой и другие допустимые для данного сорта дефекты), разное для разных видов напряженного состояния.

Поможем написать любую работу на аналогичную тему

  • Реферат

    Прочностные характеристики материалов в расчетах по методу предельных состояний.

    От 250 руб

  • Контрольная работа

    Прочностные характеристики материалов в расчетах по методу предельных состояний.

    От 250 руб

  • Курсовая работа

    Прочностные характеристики материалов в расчетах по методу предельных состояний.

    От 700 руб

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Предел прочности при растяжении | Мир сварки

Предел прочности при растяжении

Материалσв
кгс/мм2107 Н/м2МПа
Металлы
Алюминий8-117,8-10,878-108
Алюминий отожженный9,1-10,958,96-10,7589-108
Бериллий1413,8138
Бронза (91 % Cu + 6 % Sn + 3 % Zn)20-3819,6-37,3196-373
Ванадий18-4517,6-44,2176-442
Вольфрам120-140118,0-137,51180-1375
Вольфрам отожженный71,3-82,569,9-80,9699-809
Дюраль40-5039,2-49,1392-491
Железо кованное40-6039,2-58,9392-589
Гафний35-4534,5-44,2345-442
Золото14-1613,8-15,7138-157
Золото отожженное12,612,4124
Инвар7876,5765
Индий5,15,0550,5
Кадмий6,46,363
Кальций6,1660
Кобальт отожженный49,848,9489
Константан (60 % Cu + 40 % Ni)3231,4314
Латунь (66 % Cu + 34 % Zn)10-209,8-19,698-196
Магний18-2517,6-24,5176-245
Магний литой3029,4294
Медь22-2421,6-23,5216-235
Медь деформированная20,4-25,520-25200-250
Молибден40-7039,3-68,6393-686
Молибден литой31,430,8308
Никель40-5039,3-49,1393-491
Ниобий35-5034,5-49,1345-491
Ниобий отожженный32,8-41,432,2-40,6320-406
Олово1,7-2,51,7-2,517-25
Олово литое1,5-2,51,5-2,415-24
Палладий18-2017,6-19,6176-196
Палладий литой18,618,2182
Платина24-3423,5-34,0235-34
Родий отожженный5655550
Свинец1,1-1,31,1-1,310,8-12,7
Серебро10-159,8-14,798-147
Серебро отожженное13,813,5135
Сталь инструментальная45-6044,1-58,9441-589
Сталь кремнехромомарганцовистая1551521520
Сталь специальная50-16049-157491-1570
Сталь рельсовая70-8068-78687-785
Сталь углеродистая32-8031,4-78,5314-785
Тантал20-4519,6-44,2196-442
Титан25-3524,5-34,5245-345
Титан отожженный3029,6296
Хром30-7029-69294-686
Цинк11-1510,8-14,7108-147
Цирконий25-4024,5-39,3245-393
Чугун10-129,8-11,898-118
Чугун ковкий2019,6196
Чугун серый мелкозернистый21-2520,6-24,5206-245
Чугун серый обыкновенный14-1813,7-17,7137-177
Пластмассы
Аминопласт слоистый87,878
Асботекстолит6,5-11,96,4-11,764-117
Винипласт4-63,9-5,939-59
Гетинакс15-1714,7-16,7147-167
Гранулированный сополимер43,939
Древесно-слоистый пластик ДСП-Б (длинный лист)2221,6216
Древесный коротковолнистый волокнит К-ФВ2532,9429,4
Капрон стеклонаполненный15-1814,7-17,6147-176
Пенопласт плиточный0,060,060,59
Пенопласт ФК-200,170,171,7
Полиакрилат (оргстекло)54,949
Полиамид наполненный П-685-64,9-5,949-59
Полиамид стеклонаполненный СП-687,4-8,57,3-8,373-83
Поливинилхлорид неориентированный3-52,9-4,929-49
Поликапроамид6,0-6,55,9-6,459-64
Поликапроамид стеклонаполненный12,9-15,012,7-14,7127-147
Поликарбонат (дифион)6,0-8,95,9-8,759-87
Поликарбонат стеклонаполненный12,5-15,012,3-14,8123-148
Полипропилен ПП-12,52,525
Полипропилен стеклонаполненный5,65,555
Полистирол стеклонаполненный7,4-10,57,3-10,373-103
Полистирол суспензионный ПС-С4,03,939
Полистирол эмульсионный А3,5-4,03,4-3,934-39
Полиформальдегид стабилизированный6-75,9-6,959-69
Полиэтилен высокого давления кабельный П-2003-51,20-1,391,18-1,3711,8-13,7
Полиэтилен высокого давления П-2006-Т1,391,3713,7
Полиэтилен низкого давления П-4007-Э2,202,1621,6
Полиэтилен среднего давления2,70-3,292,65-3,2326,5-32,3
Стекло органическое ПА, ПБ, ПВ54,949
Стеклотекстолит3029,4294
Текстолит графитированный98,888
Текстолит поделочный ПТК109,898
Фаолит А1,731,717
Фенопласт текстолитовый8-107,8-9,878-98
Фторопласт 33-42,9-3,929-39
Фторопласт 421,9619,6
Целлон43,939
Дерево
Бамбук2221,6216
Береза76,969
Бук87,878
Дуб87,878
Дуб (при 15 % влажности) вдоль волокон9,59,393
Ель54,949
Железное дерево2221,6216
Сосна54,949
Сосна (при 15 % влажности) вдоль волокон87,878
Минералы
Графит0,5-1,00,5-0,94,9-9,8
Различные материалы
Бакелит2-31,96-2,9419,6-29,4
Гранит0,30,292,9
Кетгут4241,2412
Лед (0 °С)0,10,0980,98
Нити кварцевые9088,3883
Нити шелковые2625,5255
Паутина1817,6176
Стекло органическое43,939

weldworld.ru

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий