Простыми словами: теодолит – что это такое?

Алгоритм работы с прибором

  1. С помощью треноги устанавливают теодолит.
  2. Наблюдательная труба направляется в сторону двух опорных точек.
  3. Наведя прибор на первую точку, производят фиксацию и измерение вертикальной нити.
  4. Проводят отсчёт по горизонтальному кругу. Полученные данные заносят на бумагу. Аналогичную операцию проводят с другой точкой.
  5. Наблюдательную трубку переводят, минуя зенит, а затем меняют положение круга.
  6. В случае незначительных расхождений останавливаются на среднем значении.
  7. Показания лимба должно быть нулевым или стремиться к этому значению.
  8. Алидаду вращают до тех пор, пока не совпадут нулевые отметки на лимбе и микроскопе.
  9. Проводят следующий круг измерений.

Чтобы прибор постоянно показывал правильные значения, следует позаботиться об условиях его хранения. Лучше всего хранить теодолит в специальном кейсе. Укладывают и достают прибор, придерживая его за подставки или рукоятки. Завершив работу с прибором, прежде чем убрать его в кейс, ослабляют винты, расположенные на зрительной трубе и алидаде. Потом их снова зажимают. Фиксирующие зажимы предохраняют прибор от повреждений при случайных падениях. Если крышка кейса плохо закрывается, значит, прибор плохо уложен.

Когда устанавливают штатив, то ослабляют винты. Выполнив регулировку, винты полностью зажимают. Становым винтом выполняют надёжную фиксацию теодолита сразу же после того, как он будет установлен на штатив. Наводящие и подъёмные винты не расслабляют и не зажимают до упора. При перемещении теодолита на небольшие расстояния его закидывают на плечи вместе со штативом. Большие расстояния прибор должен преодолевать, будучи убранным в кейс.

Устройство

Конструкция теодолита состоит из базовых частей, которые усложнялись с развитием техники, оснащая его большим количеством функций. Строение инструмента:

  • Металлическую треногу с регулируемым штативом и подставкой;
  • Центровой отвес и пузырьковый цилиндрический уровень для ровной установки устройства на подставку (трегер);
  • Три выравнивающих подъемных винта трегера для горизонтирования прибора;
  • Алидаду – верхняя вращающаяся часть прибора, на которой располагаются подвижная зрительная трубка и отсчетный механизм;
  • Винты алидады – наводящий и закрепляющий;
  • Вертикальный и горизонтальный (лимб) круги, размеченные на угловые градусы;
  • Винты горизонтального круга: наводящий и закрепляющий;
  • Трубку с наводящим и закрепляющим винтами осуществляющими регулировку резкости изображения, окуляром со стороны смотрящего и объективом, обращенным к объекту наблюдения;
  • Окуляр: в него и в объектив устанавливаются линзы, с нанесенной сеткой (коллимационной плоскостью); или датчикилазер (электронная система);
  • Кремальеру – винтовой элемент для фокусировки изображения в окуляре;
  • Опоры для оси вертикального вращения трубки;
  • Отсчетное устройство – оптический микроскоп (со специальным визиром, шкаловой или штриховой линзой и специальным зеркальцем или автономным источником света для считывания показаний).


В современных моделях могут отсутствовать некоторые составные части (например, винты или оптический визир отсчетного устройство), но, при этом, содержать в конструкции дополнительные элементы, например, фото- видеокамеру, лазерную указку, дисплей и клавишную панель настройки. Основные части современного теодолита – алидада, зрительная труба, лимб или горизонтальный круг, подставки, цилиндрический уровень, подъемные винты и вертикальный круг.

Устройство зрительной трубы теодолита:

Горизонтальный круг

Горизонтальный и вертикальный круги теодолита – основные круговые оси прибора, необходимые для замера углового наклона исследуемого объекта. Горизонтальный круг, или лимб представляет собой кольцо из стекла, с нанесенными на него штриховыми угловыми числовыми значениями (градусы, минуты, иногда и секунды).

Шкала представляет собой полный круг от 0-го до 359-го градуса.

Шаг лимба зависит от показателя точности теодолита.

Лимб и алидада

Алидадой называется вся верхняя конструкционная часть теодолита. Она закрепляется на оси непосредственно над лимбом и позволяет конструкции вращаться в горизонтальной плоскости.

Алидада включает в себя колоннообразные опоры: на одной из них располагается вертикальный замерный круг, а в другую вмонтирован микроскоп отсчетного устройства, с помощью которого можно точно определить угол заданный поворотом алидады по окружности лимба. Между опорами располагается подвижный в вертикальной плоскости цилиндр трубки. Алидада и лимб закрываются герметичными кожухами из металла или высокопрочного пластика для предохранения от загрязнения и деформации.

Алидада, трубка и лимб являются ведущими подвижными элементами прибора. Алидада задает отсчет относительно исследуемых точек, после чего для фиксации системы координат кольцо лимба вращается и закрепляется винтами относительно исследуемых точек.

На видео вы можете посмотреть про назначение и устройство теодолита:

Классификация теодолитов

Устройства различаются по типу точности, сферам использования и конструктивным особенностям. При этом каждая классификация определяет, для чего предназначен теодолит и в каких работах он будет полезнее. По точности они бывают:

  • высокоточными — погрешность составляет менее 1,5”;
  • точными — показатель погрешности колеблется в пределах от 1,5 до 10”;
  • оптическими (техническими) — погрешность от 10” и выше.

По сфере использования конструкции подразделяются на:

  • автоколлимационные;

  • гироскопические;
  • маркшейдерские;
  • буссольные;
  • геодезические;
  • астрономические.

По конструктивным особенностям оптической системы трубы бывают с обратным или прямым изображениям.

Стоит упомянуть об отличиях теодолита от нивелира. Разница заключается в том, что теодолитом можно выполнять не только горизонтальную нивелировку, но также измерять вертикальные углы.

Что такое геодезия

Геодезия — это наука, занимающаяся точным измерением земной поверхности, созданием рабочих чертежей или карт и прочими прикладными задачами.

Для всех этих направлений созданы специальные разделы геодезии, но наиболее ощутимой и важной для повседневной жизни является инженерная геодезия. Именно этот раздел занимается съемкой местности для постройки зданий и сооружений, для прокладки дорог, для определения точности проходки шахтных выработок или тоннелей

Задачи, решаемые этой отраслью, носят чисто прикладной характер, тесно соприкасающийся со строительством или картографией

Именно этот раздел занимается съемкой местности для постройки зданий и сооружений, для прокладки дорог, для определения точности проходки шахтных выработок или тоннелей. Задачи, решаемые этой отраслью, носят чисто прикладной характер, тесно соприкасающийся со строительством или картографией.

Применение и его особенности

В основном теодолит применяется в геодезии, строительстве, астрономии. И даже появление оборудования, позволяющего получать максимально точные результаты не позволяет специалистам отказаться от его использования. Помощь теодолита, позволяющего получить довольно точные результаты, незаменима при разметке профилей дорожного полотна, контуров строений, расстояний между объектами и пространственных углов между ними. Иногда теодолиты используются в лесном хозяйстве, мелиорации. Особая роль отводится прибору при проведении оценки состояния старых строений: он позволяет выявить возможную деформацию строения, а также влияние на данный разрушительный процесс как веса здания, так и природный явлений.

Теодолит — один из первых приборов, с которым строители, а до них и геодезисты, приходят на строительную площадку. На начальной стадии ведения работ и возведения фундамента, он используется для определения рельефа, оценки его наклона. Именно при помощи теодолита гарантируется строгая вертикаль высотных конструкций.

Теодолиты незаменимы для выполнения расчетов и различных измерений при строительстве туннелей, шахт, мостов и т.д. Современные устройства с лазерным лучом могут использоваться даже в условиях слабой освещенности, позволяют в более краткие сроки провести целый комплекс самых разных измерений с высокой точностью результата.

Необходимые поверки

Для правильной работы прибора и достижения требуемой точности измерений перед началом полевых работ выполняется контроль соблюдения необходимых для этого условий — так называемые поверки теодолита. Правильный порядок их проведения необходим для выявления и устранения отклонений во взаиморасположении всех основных осей теодолита, которое называется геометрическими условиями прибора.

Надежность закрепления

Работа с инструментом начинается с приведения в устойчивое положение подставки со штативом и его закрепления на штативы при помощи станового винта. Проверка выполнения этого условия осуществляется путем легких поворотов подставки из стороны в сторону и одновременного наблюдения за какой-либо четко завизированной точкой на местности через перекрестье нитей. Условие считается выполненным, если положение выбранной точки не меняется относительно перекрестия нитей.

Крепление теодолита к штативу должно быть достаточно надежным, но при этом следует не перетягивать становой винт. Тугое вращение винтовых приспособлений приводит к их быстрому изнашиванию и выходу из строя. Перед использованием устройства проверяются и при необходимости затягиваются винты крепления наконечников на ножках штатива и на шарнирах его головки. Подъемные винты закрепляются в устойчивом положении, а люфт между ними и подставкой прибора устраняется.

Настройка уровня

ОВ алидады должна быть перпендикулярна оси цилиндрического уровня на горизонтальном круге. Проверку выполнения этого условия начинают с установки теодолита в рабочее положение и поворота алидады до такого места, в котором цилиндрический уровень находится примерно параллельно обоим подъемным винтовым механизмам. Затем путем вращения винтов пузырек уровня выводится точно в нуль-пункт. Положение пузырька снова проверяется после разворота алидады на 180°. Условие соблюдено в том случае, когда пузырек остается в нуль-пункте.

Если положение пузырька уровня изменилось на одно или больше делений, то производится юстировка с помощью исправительных и подъемных винтов. Винтовыми механизмами уровня пузырек передвигают в направлении нуль-пункта до половины расстояния его смещения, затем доводят его до нуль-пункта подъемными винтами.

Зрительная труба

Правильность измерений обеспечивается только в том случае, когда ОВ этой части теодолита перпендикулярна визирной оси. Для поверки теодолит наводится на определенную фиксированную точку. При соблюдении условия разница отсчетов по горизонтальному кругу между значениями, полученными для левого (Л) и правого (П) положения вертикального круга, должна составлять 180º. Если визирная ось не перпендикулярна ОВ трубы, то отсчеты Л и П будут отличаться от правильного значения на одинаковую величину, которая называется двойной коллимационной ошибкой.

Она рассчитывается по формуле 2с = (Л — П ± 180°) и не должна быть выше двойной точности инструмента. При превышении допустимых значений погрешности производится устранение угла отклонения путем юстировки вертикального штриха нитей сетки с помощью боковых винтов. Сетку перемещают вправо, завинчивая левый и вывинчивая правый винт, влево — наоборот.

Ось вращения алидады должна быть перпендикулярна ОВ зрительной трубы, что обеспечивает вертикальность коллимационной плоскости. Операция поверки начинается с визирования высоко расположенной точки под углом наклона 25—30º вблизи выбранного объекта. Затем труба переводится в горизонтальное положение, а на стене отмечается место, где находится центральная нить сетки.

После этого труба переводится через зенит, визируется на выбранную точку и отмечается ее проекция. Условие считается соблюденным в том случае, когда изображения первой и второй проекции находятся в пределах биссектора (области между двумя штрихами) сетки нитей. Если теодолит не прошел эту поверку, то прибору требуется изменение наклона оси, которое производится в ремонтной мастерской.

Сетка нитей

Вертикальный штрих нитей сетки должен являться перпендикуляром к ОВ зрительной трубы. Поверку осуществляют путем наведения нитей перекрестья на хорошо заметную точку близкого объекта и последующим отслеживанием ее расположения по отношению к вертикальному штриху во время поворотов трубы наводящим винтом.

Условие считается выполненным, если выбранная точка при этом не сдвинулась со штриха. При несоблюдении условия возникает необходимость в юстировке.

Выбираем теодолит грамотно

До приобретения данного устройства следует озаботиться некоторыми критериями (по степени их необходимости), которые повлияют на стоимость аппарата:

  • Уровень допустимой погрешности (для общестроительных работ малой этажности он наименее важен);
  • Степень защиты составных частей от пыли и влаги (в местностях с умеренным климатом без резких температурных перепадов данным параметром можно даже пренебречь, в силу и так полной вакуумной изолированности визирной трубки);
  • Тип будущих измерений (речь идет о многофункциональных либо узкоспециализированных устройствах);
  • Общий вес (он будет играть большую роль если требуется использовать оборудование в длительных пеших переходах);
  • Запас ударопрочности (в большей степени касается дорогостоящих теодолитов, для которых малейшее сотрясение корпуса может повлечь искажение измерительных данных).

Измерительные устройства

Основными наиболее распространёнными измерительными устройствами для вычисления разных расстояний, определения углов и азимута являются:

  • тахеометры;
  • теодолиты;
  • нивелиры.

Самым простым по функциям устройством считается нивелир. Как правило, с его помощью вычисляют и определяют вертикальные углы.

Когда требуется узнать не только вертикальный, но и горизонтальный угол, применяется уже теодолит.

А самым универсальным измерительным прибором является тахеометр. С его помощью собрать и обработать данные, а после произвести расчёты на их основе, можно гораздо быстрее. Он к тому же позволяет вычислять расстояния до точек, различных объектов и прочих целей.

Теодолит

Главная задача теодолита определить направления и с максимальной точностью измерить между ними углы.

Применяется этот прибор в различных сферах:

  • в геодезии;
  • в горной инженерии;
  • в строительстве (как зданий, так и дорог и прочего);
  • в топографии.

Теодолит включает в себя следующие элементы:

  • зрительную трубу оптическую: для наблюдения, наводя её на проектную точку;
    • обратное наблюдение: изображение перевёрнуто;
    • прямое наблюдение: изображение в нормальном положении.
  • лимбы: шкалы (круглые), расположенные по горизонтали или вертикально;
  • микрометр: микроскоп, чтобы снимать отсчёты;
  • отвес: для точности расположения устройства относительно опорной проектной точки, может быть оптическим или механическим;
  • цилиндрический уровень.

По назначению бывают:

  • горные: в отличие от полевых более мобильные и прочные, так как созданы для съёмки в тяжёлых подземных условиях, по принципиальному устройству не отличаются от обычных;
  • полевые.

По степени точности теодолиты могут быть:

  • высокоточными;
  • техническими;
  • точными.

По принципу работы бывают:

  • гиро-, кино- и фототеодолиты;
  • оптические;
  • электронные.

Тахеометр

Чаще всего тахеометры используют в своей работе геодезисты. Помимо них, приборы используют в следующих сферах:

  • кадастровые работы и картография;
  • строительство;
  • топографические съёмки местности.

С их помощью определяют подробную информацию о нужном участке на местности. Они позволяют узнать:

  • высоту объектов на расстоянии;
  • параметры тех или иных измерений (относительно базовой линии);
  • расстояние между отдельно стоящими объектами;
  • точные координаты для заданной точки или какого-либо объекта.

По конструктивным особенностям приборы делятся на следующие типы:

  • интегрированные: все элементы прибора составляют единую общую конструкцию;
  • модульные: всё элементы прибора возможно поменять, благодаря отдельной сборке;
  • неповторительные: лимбы и прочие детали закреплены наглухо, их самостоятельная замена невозможна.

По принципу работы тахеометры могут быть:

  • автоматическими;
  • оптическими (специалисты в основном предпочитают этот вид приборов);
  • электронно-оптическими.

Среди ряда особенностей функционирования конкретных моделей теодолитов, стоит обращать внимание на возможность производить измерения против солнца, а также сквозь ветви деревьев, кустов или рабицу

Нивелир

Слово «нивелир» в переводе с французского значит «уровень». С его помощью можно определить превышение между проектными точками, то есть разницу высот между ними.

По степени точности измерений приборы также могут быть:

  • точными;
  • техническими;
  • высокоточными.

Нивелиры можно разделить между собой на следующие виды:

  • Электронные.
    • Лазерные. Измерения происходят с помощью луча лазера и особой рейки. Такой вид практически не применяют для съёмки мелкого масштаба, так как в этом случае результаты точнее дадут оптические приборы.
    • Цифровые. Чтобы процесс вычислений и измерений шёл автоматически, а также полученные данные сохранялись, они оснащены особой рейкой и встроенным процессором.
  • Оптическо-механические. Прибор в основном фиксируется на штативе, имеет уровень особой чувствительности и зрительную трубу с поворотным механизмом. Расстояние определяется по рейке из дерева или металла со шкалой, с помощью нитяного дальномера.

Что такое нивелир и его основные особенности

Нивелир является измерительным устройством, которое используется инженерами и строителями для определения высоты различных точек на плоскости. Главная задача этого прибора заключается в построении стабильной горизонтальной линии, с помощью которой определяются геометрические отклонения объектов.

Главной задачей нивелира считается построение стабильной горизонтальной линии

Работа с нивелиром требует понимания его принципа действия. Если заглянуть в окуляр современного приспособления, то можно заметить, что оно накладывает рисунок из линий на изображение объекта. Такая система называется визирной сеткой. Спроектированные линии располагаются не только в горизонтальной плоскости, но и по вертикали.

Наиболее технологичными и эффективными являются лазерные приспособления, которые проецируют линии визирной сетки непосредственно на необходимый объект. Построение нитей выполняется на 360°, что позволяет получить максимально точную картину расположения точек.

Большой популярностью пользуются лазерные нивелиры Бош, отличающиеся от других приспособлений качеством комплектующих деталей. При выборе конкретного устройства в первую очередь необходимо определить его назначение.

Наиболее эффективными и технологичными считаются лазерные устройства

Нивелир: это многопрофильный прибор, используемый в строительстве

Такие приспособления являются очень полезными в строительстве, они используются для выполнения разных задач. С помощью данного инструмента можно организовать работу по нанесению облицовочного материала на любую поверхность.

Нивелиры активно применяются при поклейке обоев. Если использовать этот прибор, то необходимость в организации отбивок пропадает. Уровень следует выставить под потолком и клеить полосы в соответствии с линией, которую показывает измерительный прибор. Узнать подробнее о том, как работать с нивелиром, позволяет просмотр видеоматериалов на данную тематику.

Это устройство также применяется опытными мастерами во время плиточной кладки. С его помощью гораздо проще выдерживать ровные линии, чем и обуславливается спрос на данное приспособление в строительной среде. Однако стоит сказать, что для облицовки рабочей поверхности плиткой понадобится инструмент, который рассекает луч на отдельные перпендикулярные пучки.

Нивелир – это универсальное устройство, которое может предназначаться и для других задач. Рассмотрим, в каких случаях используется этот прибор, помимо вышеперечисленных:

Нивелиры используют не только для строительства зданий, но и во время работ по внутренней отделке помещений

  • для отделки лестничных маршей;
  • монтажа различной бытовой техники;
  • сборки и установки мебели.

Таким образом, эксплуатационная сфера устройства довольно широка. Работать с нивелиром не так сложно, как кажется на первый взгляд, – достаточно понять принципы функционирования прибора.

Инструкция по приведению теодолита в рабочее положение

Подготовка теодолита к работе включает в себя три основных этапа: центрирование, горизонтирование и фокусировку.

Центрирование

Подразумевает установку прибора со штативом над центральной зоной измерительного пункта. Во время геодезических операций для центрирования используют нитяной отвес или оптический центрир. Точность выполняемой работы и точность центрирована взаимосвязаны. На глаз определяют центральную точку геодезического пункта. Над этим центральным сектором размещают прибор.

Нижняя область станового винта оснащена крючком, на который следует подвесить нитяной отвес. Наблюдая за остриём груза отвеса и передвигая ножки штатива, фиксируют прибор с точностью 3–5 см. Так, чтобы расстояние между остриём грузика и центром не превышало 3–5 см. Далее следует вдавить треногу в землю, осуществляя контроль по грузику за нахождением прибора относительно центра.

Последним шагом должно быть ослабевание станового винта штатива. При перемещении трегера пальцами правой руки острие грузика отвеса должно очутиться прямо над центром. Выполнив это, можно затянуть становой винт.

Горизонтирование

Конечная цель этого этапа — добиться, чтобы горизонтальный круг теодолита оказался в горизонтальной плоскости. Ось вращения же должна принять отвесное положение. Теодолит должен быть развернут так, чтобы цилиндрический уровень поворотной линейки расположился вдоль двух подъемных винтов.

Ослабевая или затягивая подъёмные винты, приводят уровневый пузырёк в нулевой пункт. Пузырёк может быть как с левой стороны от середины, так и с правой. От этого зависит, в каком направлении нужно вращать подъёмные винты.

Дальше теодолит разворачивают на 90 градусов. Подключают третий подъёмный винтик. Пузырь приводят к нулевому пункту.

Контроль горизонтирования проводят посредством разворачивания прибора в несколько различных положений. Горизонтирование считается выполненным успешно, если в любом произвольном положении пузырёк уровня отклоняется от середины не больше чем на одну риску.

Рассматриваемая схема применима, если алидада горизонтального круга оснащена цилиндрическим уровнем. Некоторые теодолиты при поворотной линейке имеют круглый уровень. При таком раскладе прибор фиксируют в произвольном положении. Начинают поочерёдно вращать три подъёмных винтика, приводя мембранную капсулу к нулевой отметке. Осуществляют контроль качества проделанного горизонтирования.

Выполнив последовательно центрирование и горизонтирование теодолита, можно обнаружить, что ось вращения прибора приняла отвесное положение и проходит через центр геодезического пункта.

Фокусировка

Фокусируют сетку нитей этого геодезического девайса перед самым началом измерительных работ. Вращают диоптрическое кольцо окуляра наблюдательной трубы прибора до того, пока не появится чёткая картина сетки нитей.

Фокусируют шкалу отсчетного механизма путём вращения диоптрического кольца микроскопа, пока не будет наблюдаться чёткая градация шкалы. Проводя фокусировку и последующие измерения, стараются добиться достаточного освещения шкалы, используя зеркало подсветки.

Определение высоты здания, строения теодолитом (+ видео)

Для примера рассмотрим формулу определения высоты здания, строения, столба и т.п. Берём теодолитом и мерной лентой отсчёты значений, указанных на рисунке ниже, и записываем их в таблицу (тетрадь).

Теодолит располагают на расстоянии, не меньшем высоты строения, если это невозможно, то как можно дальше от объекта. Далее по формуле h = h1 + h2 = d(tgv1 + tgv2) вычисляем высоту строения.

Если линия АВ имеет уклон на местности, необходимо рассчитать горизонтальное проложение этой линии, её проекцию на горизонтальную плоскость по формуле d = Scosν снимая отсчёты как показано на рисунке ниже.

Горизонтальное проложение линии

Как определить высоту сооружения расскажет это видео, с расчётами и формулами.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий