Кулачковый механизм: схема, применение, эксцентриситет

Применение кулачкового механизма

Те задачи, для решения которых используются кулачковые пары, чаще всего определяются сферой применения, причем они весьма разнообразны. В машинах-орудиях и в машинах-двигателях общего машиностроения на кулачки обычно возлагается задача выполнять те операции, которые повторяются периодически (например, сцепление или расцепление, замыкание, нажим, поднимание, открывание и т.п.). В станочном оборудовании с помощью толкателя инструментам или устройствам задается некоторое перемещение, характеризующееся относительно небольшой длиной пути и заданной скоростью.

Одними из широко распространенных устройств, в которых используются кулачковые механизмы, являются двигатели внутреннего сгорания. Кроме того, они являются неотъемлемой частью полиграфических и текстильных машин, разнообразных приборов, автоматов различного назначения.

Назначение и область применения

Кулачковый механизм превращает вращение в линейное перемещение малой амплитуды. На практике это короткое линейное движение используется для выполнения следующих операций:

  • сцепление или расцепление частей механизма;
  • открытие или закрытие клапана;
  • возвратно- поступательно движение какого-либо исполнительного органа изделия;
  • повторение исполнительным органом наперед заданной в конфигурации поверхности кулачка сложной пространственной траектории.

Эти операции находят применение в следующих устройствах и системах:

  • управление клапанами двигателей внутреннего сгорания;
  • топливные и масляные насосы;
  • приводы гидравлических и пневматических тормозных систем;
  • распределитель зажигания в устаревшем карбюраторном двигателе;
  • привод перемены передач в трансмиссиях мотоциклов и другого двухтактного транспорта;
  • швейные машины;
  • музыкальные механизмы: механический орган, шарманка, шкатулка и т. п.;
  • транспортно- технологические машины;
  • таймеры с механическим приводом;
  • сельскохозяйственные механизмы, комбайны, осуществляющие уборку и сортировку корнеплодов или злаков;

Кроме того, широчайшая область использования кулачковых пар лежит там, где требуется не погасить, а, наоборот, создать вибрацию. Они находят применение в вибромашинах, служащих для уплотнения грунта или бетонных полов в строительстве. Горная техника, используемая при добыче рудных материалов, также производит сортировку тонких фракций на вибростолах, приводимых в движение кулачковыми парами.

Еще одна важная сфера применения – точные измерительные приборы и средства механической и электромеханической автоматизации. Контактный манометр и многие другие прецизионные приборы широко используют кулачковые пары для передачи вращения стрелки на шток, замыкающий контактные группы.

Используются кулачковые устройства в малых и средних металлообрабатывающих станках для переключения передач, периодического перемещения рабочих органов.

В производственных технологических установках в химической, пищевой и фармацевтической промышленности устройства используются для дозированной подачи сыпучего сырья к месту дальнейшей переработки.

Несмотря на стремительное совершенствование электронных средств управления, старая проверенная кулачковая пара уверенно удерживает свои позиции там, где требуется многократно повторять однообразные движения с высокой точностью.

Преимущества бесконтактных моделей

Главным преимуществом бесконтактных выключателей является экономия электричества. Электроэнергия не тратится в случае отсутствия людей в помещении. Человеку не нужно принимать участие, чтобы включить или выключить свет. Следовательно, использование таких моделей считается комфортным.

Техническая простота является плюсом стандартных контактных выключателей, но есть некоторые минусы:

  1. Маленький ресурс при применении максимальной нагрузки. Если контакты размыкаются, возникает искра, что вызывает поломку выключателя. При наличии постоянного тока устранить аварию поможет конденсатор, имеющий параллельное подключение к контактам. При наличии в сетях переменного тока понадобится тугоплавкая напайка из вольфрама.
  2. Минусом контактного устройства считается сильная чувствительность к пыли и грязи. Это вызывает нарушение электрической цепи. Далее происходит снижение взаимодействия контактов, а в итоге — перегрев и поломка.

Огромный выбор дает возможность найти элемент для использования в конкретном случае. Если нужно реализовать сенсорное управление, подойдет емкостный выключатель, а для использования в загрязненных условиях лучше выбрать индуктивный вариант.

Основные технические характеристики ТЭ:

Наименование параметра Величина
Толкатель ТЭ-16 Толкатель ТЭ-25 Толкатель ТЭ-30 Толкатель ТЭ-50 Толкатель ТЭ-80 Толкатель ТЭ-200
Среднее усилие подъема, Н 160 250 300 500 800 2000
Развиваемое усилие подъема, Н 200 300 350 600 900 2200
Ход штока, мм 35 35 35 60 60 60
Номинальная мощность двигателя, кВт 0,06 0,06 0,06 0,39 0,39 0,55
Номинальное напряжение питающей сети, В 380 380 380 380 380 380
Частота тока питающей сети, Гц 50 50 50 50 50 50
Число оборотов двигателя (синхронное), об/мин 2800 2800 2800 2800 2800 2800
Масса рабочей жидкости, кг, не более 1,35 1,35 1,35 2,1 1,6 1,8
Масса толкателя, кг, не более 12,8 12,8 12,8 12,8 15,5 18

Примечание:

  • в таблице приведены параметры толкателей в холодном состоянии;
  • у толкателей в нагретом состоянии допускается увеличение времени подъема штока не более чем на 25%, времени обратного хода штока не более, чем на 15%;
  • в зависимости от колебания напряжения в пределах от 0,85 до 1,1 от номинального, частоты (50 или 60Гц) питающей сети, допускается изменение времени подъема и опускания штока в пределах ±15% от величины, указанной в таблице.

Основные узлы и детали:

  • 1 — асинхронный двигатель;
  • 2 — корпус с цилиндром;
  • 3 — рабочий поршень;
  • 4 —  шток;
  • 5 — подшипниковый щит, в который запрессован рабочий вал;
  • 6  — рабочее колесо; 
  • 7 —  контровочная гайка;
  • 8 — заливное отверстие.

Принцип действия:

Гидравлический толкатель состоит из электродвигателя, поршня, штока, центробежного колеса. Уплотнительное кольцо не допускает утечки тормозной жидкости. В гидротолкателе применяется электродвигатель АДГМ. При работе электродвигателя рабочее колесо, вращаясь, создает избыточное давление рабочей жидкости, которая нагнетается под поршень и поднимает его со штоком до крайнего верхнего положения. Поршень остается в крайнем верхнем положении до тех пор, пока работает электродвигатель. При выключении двигателя рабочее колесо останавливается, и поршень со штоком под действием внешней нагрузки и собственного веса опускается вниз.

ВНИМАНИЕ! Заправку рабочей жидкости производить после установки толкателя на тормозной механизм, в вертикальном положении  ± 15°. Размеры всех гидротолкателей унифицированы и взаимозаменяемы с размерами гидротолкателей других заводов производителей

Размеры всех гидротолкателей унифицированы и взаимозаменяемы с размерами гидротолкателей других заводов производителей

Размеры всех гидротолкателей унифицированы и взаимозаменяемы с размерами гидротолкателей других заводов производителей.

Габаритные и установочные размеры толкателей электрогидравлических ТЭ-16, ТЭ-25, ТЭ-30:

Габаритные и установочные размеры толкателей электрогидравлических ТЭ-50, ТЭ-80, ТЭ-200:

Тип толкателя Величина, мм
B A f d c a D
Гидротолкатель ТЭ50 435 465 65 16 18 60 230
Гидротолкатель ТЭ80 435 465 65 16 18 60 230
Гидротолкатель ТЭ200 565 610 60 20 40 90 260

 

Не допускается применение гидротолкателя во взрывоопасной среде, а также в атмосфере, разрушающей металл и резину.

Для применения в подземных выработках рудников и шахт, в том числе опасных по газу и пыли, выпускаются электрогидравлические толкатели «ТЭ» взрывобезопасного исполнения РВ ЕхвI.

Взрывозащищенные толкатели предназначены для работы в сети переменного тока напряжением 660/380 В (по заказу 660/1140 В); Y/D; I Y ном = 0,27A/I ном = 0,4A, частотой 50 Гц, в повторно-кратковременном режиме при ПВ 60% и менее, с частотой включений до 720 вкл/час, при этом номинальные значения климатических факторов внешней среды должны соответствовать видам климатического исполнения У категории 2.

Достоинства кулачковых механизмов

Основным преимуществом устройства считается его способность реализовать весьма сложные пространственные траектории движения толкателя. Кроме того, движение можно строго регулировать по временным фазам, зависящим от угла поворота ведущего вала. При этом конструкция его весьма проста в работе и обслуживании.

Еще одним важным преимуществом конструкции над, скажем, электронными системами управления с электрическим или гидравлическим приводом, является ее исключительная надежность

Это очень важно в тех конструкциях, где требуется достичь точного многократного повторения одних и тех же движений, таких, как двигатель или швейная машинка

Где применяется кулачковый переключатель

Настоящее изобретение применяется в бытовых целях, производственных задачах, в речном и морском судоходстве, а также для работы сельскохозяйственных механизмов. При помощи этого агрегата возможно безопасное подключение электрооборудования, а также вывод его из схемы. Кроме этого данный прибор способствует ремонту и профилактике электрооборудования.

Специалисты испытывают потребность при производстве некоторых электромонтажных работ. К ним относятся такие процессы как:

  • переключение желаемого соединения группы сопротивлений;
  • выключение и включение разъединителя в трансформаторных подстанциях;
  • руководство оперативными сетями; перевод режимов эксплуатации нагревательного электрооборудования;
  • остановка сварочного аппарата;
  • управление механизмами трехфазных и однофазных двигателей.

Зачастую изобретение используется в трансформаторах, содействует руководству электродвигателями, им комплектуется некоторые виды измерительных приборов.

Эти агрегаты используются в щитах постоянного и переменного тока, на трансформаторных подстанциях, в нагревательных приборах, в схемах обмоток, в щитах управления АВР.Также они применяются во вторичных сетях. К примеру, для замеров фазных показателей напряжения способен один семипозиционный переключатель и вольтметр. Это дает возможность заместить работу шести вольтметров, что делает такой способ менее затратным и трудоемким.

Технические характеристики

Основные рабочие детали — «кулачки», которые приводят в действие «толкатель». Оборудование предполагает оснащение группой коммутационных сегментов, при изменении месторасположения которых можно добиться желаемого их расположения для активации определенной схемы включения в данный момент времени.

Месторасположение кулачков и контактов – это коммутационная программа, ее основная задача заключается в сборке определенной схемы подключения. Их устанавливают внутри корпуса, изготовленного из пластмассы, в ее состав также входит меламин.

Для повышения износостойкости и коммутационных характеристик в устройстве контакты изготавливают не из меди, а из серебра. Еще одно достоинство материала – серебро выдерживает электрическую дугу. Также устройство оснащено фиксирующим механизмом привода, без участия которого переключатель не сможет фиксироваться в заданном направлении, следовательно, кулачковый переключатель уже не сможет справляться с поставленными задачами.

Стоит упомянуть об ограничители движения привода. Его предназначение в том, чтобы фиксировать переключатель в крайнем положении. Вал устройства или привод — это обыкновенный прут квадратного сечения. Для оптимального переключения контактов и надежной работы его требуется изготавливать из качественного металла, чтобы деталь могла выдержать нагрузку при прокручивании. Этот момент очень важен в тех отраслях, где требуется управлять за электродвигателями. Для удобства управления и переключения режимов применяется специальная рукоятка, изготовленная из специального изоляционного вещества.

Принципы крепления

Основной параметр, который необходимо принимать во внимание при креплении грузов при помощи стяжного ремня с храповиком, – сила натяжения. Нагрузка, с которой можно натягивать храповик, имеет предел. Ленту порвать не получится, но согнуть усики запорного механизма легко, особенно когда качество стали, из которой изготовлена деталь, низкая

Ленту порвать не получится, но согнуть усики запорного механизма легко, особенно когда качество стали, из которой изготовлена деталь, низкая

Это основная проблема, с которой пользователи сталкиваются при эксплуатации стяжки

Ленту порвать не получится, но согнуть усики запорного механизма легко, особенно когда качество стали, из которой изготовлена деталь, низкая. Это основная проблема, с которой пользователи сталкиваются при эксплуатации стяжки.

Водители часто ломают стяжные устройства, используя в качестве усилителя рычага монтажную лопатку от автомобиля. Из-за этого нагрузка на усики запорного устройства резко превышает допустимую, они гнутся или сразу ломаются, если материал, из которого они изготовлены, каленый.

Чтобы предотвратить порчу стяжного механизма, не следует максимально затягивать стяжку в момент погрузки. Можно затянуть ее руками, насколько хватит сил, проехать пару километров, чтобы груз встал на свое место, и подтянуть ещё. Такой способ применяют профессионалы, которые привыкли бережно относиться к своим вещам.

Видео инструкция по работе со стяжками, имеющими храповики:

Кулачковые механизмы

Устройства используются если понадобится изменения вращения ведущего вала в линейное перемещение маленькой амплитуды. Важные элементы механизма такие:

  • ведущий вал;
  • закрепленный на нем (или являющийся его частью);
  • фасонный диск с выступом;
  • толкатель, движущий в направляющих, которые обеспечивают линейность его движения.

Фасонный диск (его называют также кулачком) – это энергичный компонент кинематической пары. Исполнительным элементом служит толкатель. Порой движение подается через качающиеся на параллельном валу коромысло.

Одним из ключевых показателей у механизмов с толкателем считается эксцентриситет — ось толкателя смещается относительно оси кулачка.

Рабочий принцип кулачкового механизма прост:

во время вращения кулачка в плоскости толкателя он поворачивается собственным сечением с большим радиусом, давя на толкатель и вынуждая его к линейному движению. Это перемещение происходит до той поры, пока не будет достигнута вершина кулачка. После его прохождения давление на шток начинает обессилеть аж до достижения очень маленького радиуса диска. Шток возвращается обратно под воздействием пружины. Цикл повторяется.

Спецификой кулачковой пары считается ее необратимость. Кривошипный механизм может преобразовывать движение туда и обратно. Так, в бензиновом или двигателе работающем на дизеле во время рабочего хода продольный ход поршня превращается во вращение коленчатого вала. Во время такта выпуска накопленная инерция вращения маховика вращает коленвал, и кривошипный механизм воплощает его в обратный ход поршня, вытесняющего останки продуктов горения рабочей смеси из цилиндра.

Кулачковая пара такой обратимости не имеет, потому как отсутствует жёсткая связь между элементами. Толкатель совершает обратное перемещение под воздействием возвратной пружины.

Самым широко популярным примером кулачкового механизма служит распределительный механизм в двигателе внутреннего сгорания. Кулачки распредвала напрямую или через коромысла открывают в конкретном порядке клапаны цилиндров. Запираются они возвратными пружинами.

Чтобы спроектировать действующее устройство, нужно провести ряд расчетов, для синтеза кулачкового механизма выстроить передаточную диаграмму.

Электронные системы поворота

Принцип работы

Принцип работы поворотного устройства очень прост и держится на двух деталях, одна из которых механическая, а другая электронная. Механическая часть поворотного устройства соответственно отвечает за поворот и наклон батареи. А электронная часть регулирует моменты времени и углы наклона, по которым действует механическая часть.

Электрооборудование, используемое вместе с солнечными батареями, заряжается от самих же батарей, что в некотором роде также экономит средства на подпитку электроники.

Положительные стороны

Если говорить о достоинствах электронного оборудования для поворотного устройства, то стоит отметить удобство. Удобство заключается в том, что электронная часть устройства будет в автоматическом режиме управлять процессом поворота батареи.

Данное преимущество не единственное, а является лишь еще одним в списке тех, что были перечислены ранее. То есть помимо экономии средств и повышения КПД, электроника освобождает человека от надобности вручную осуществлять поворот.

Как сделать своими руками

Создать трекер для солнечных батарей своими руками несложно, так как схема его создания проста. Для того чтобы создать работоспособную схему трекера своими руками необходимо иметь в наличии два фоторезистора. Кроме этих составляющих, нужно также приобрести моторное устройство, которое будет поворачивать батареи.

Подключение этого устройства осуществляется при помощи Н – моста. Этот метод подключения позволит преобразовывать ток силой до 500 мА с напряжением от 6 до 15 В. Схема сборки позволить не только понять, как работает трекер для солнечных батарей, но и создать его самому.

Чтобы настроить работу схемы, необходимо провести следующие действия:

  1. Удостовериться в наличия питания на схему.
  2. Провести подключение двигателя с постоянным током.
  3. Установить фотоэлементы нужно рядом, чтобы добиться одинакового количества солнечных лучей на них.
  4. Необходимо выкрутить два подстроечных резистора. Сделать это нужно против часовой стрелки.
  5. Запускается подача тока на схему. Должен включиться двигатель.
  6. Вкручиваем один из подстроечников до тех пор, пока он не упрется. Помечаем это положение.
  7. Продолжить вкручивание элемента до тех пор, пока двигатель не начнет крутиться в противоположную сторону. Помечаем и это положение.
  8. Делим полученное пространство на равные отделы и посередине устанавливаем подстроечник.
  9. Вкручиваем другой подстроечник до тех пор, пока двигатель не начнет немного дергаться.
  10. Возвращаем подстроечник немного назад и оставляем в таком положении.
  11. Для проверки правильности работы можно закрывать участки солнечной батареи и смотреть за реакцией схемы.

Принцип действия механизма

Принцип действия основывается на базовых законах прикладной механики, кинематики и статики, описывающий взаимодействие системы рычагов, имеющих как подвижные, так и неподвижные оси. Элементы системы полагаются абсолютно жесткими, но обладающими конечными размерами и массой. Исходя из распределения масс рассчитывается динамика кулисного механизма, строятся диаграммы ускорений, скоростей, перемещений, рассчитываются эпюры нагрузок и моментов инерции элементов.

Силы считаются приложенными к бесконечно малым точкам.

Рычажное устройство, имеющее два подвижных элемента (кулиса и кулисный камень) называют кинематической парой, в данном случае кулисной.

Чаще всего встречаются плоские схемы из четырех звеньев. Исходя из вида третьего звена рычажного механизма, различают кривошипные, коромысловые, двухкулисные и ползунные механизмы. Каждый из них обладает собственным способом преобразования вида движения, но все они используют единый прицеп действия- линейное или вращательное перемещение рычагов под действием приложенных сил.

Траектория движения каждой точки кривошипно кулисного механизма определяется соотношением длин плеч и рабочими радиусами элементов схемы.

Вращающееся или качающееся звено системы рычагов оказывает воздействие на поступательно движущееся звено в точке их сочленения. Оно начинает перемещение в направляющих, оставляющих этому звену только одну степень свободы, и движется до тех пор, пока не займет крайнее положение. Это положение соответствует либо первому фазовому углу вращающегося звена, либо крайнему угловому положению качающегося. После этого при продолжении вращения или качании в обратную сторону прямолинейно движущееся звено начинает перемещение в обратном направлении. Обратный ход продолжается до тех пор, пока не будет достигнуто крайнее положение, соответствующее либо полному обороту вращающегося звена, либо второй граничной позиции качающегося.

После этого рабочий цикл повторяется.

Если кулисный механизм, наоборот, преобразует поступательное движение во вращательное, взаимодействие осуществляется в обратном порядке. Усилие, передаваемое через сочленение от ползуна, прикладывается в стороне от оси вращения звена, обладающего возможностью поворота. Возникает крутящий момент, и вращающееся звено начинает поворачиваться.

Достоинства кулачковых механизмов

Основным преимуществом устройства считается его способность реализовать весьма сложные пространственные траектории движения толкателя. Кроме того, движение можно строго регулировать по временным фазам, зависящим от угла поворота ведущего вала. При этом конструкция его весьма проста в работе и обслуживании.

Еще одним важным преимуществом конструкции над, скажем, электронными системами управления с электрическим или гидравлическим приводом, является ее исключительная надежность

Это очень важно в тех конструкциях, где требуется достичь точного многократного повторения одних и тех же движений, таких, как двигатель или швейная машинка

Как рассчитать простой рычажный механизм самостоятельно?

Перед непосредственным созданием механизма следует провести расчеты основных показателей, а также построить схему распределения нагрузок. Силовой расчет рычажного механизма проводится после определения исходных данных:

  1. Создается кинематическая схема массы и моментов, инерции звеньев и положения центров массы.
  2. Учитывается закон движения механизма.
  3. Определяется внешнее силовое нагружение.
  4. Рассчитывается угол перекрытия рычажном механизме.

Проводимый кинематический и силовой предусматривает создание системы координат, которая используется для расчета кинематических характеристик. Кулисно-рычажный вариант исполнения проектируется при создании системы координат и обозначением всех сил. Для проектирования требуется большое количество различных формул, при этом в конце следует выполнить проверку.

Как правило, рассматриваемая работа выполняется инженерами, который учитывают ГОСТ проектирование. Это связано с тем, что структурная формула плоских рычагов выбирается в зависимости от области их применения.

Виды кулачковых пар

Разработано множество различных видов кулачковых механизмов. Они объединяются по разным признакам.

  • приводящие исполнительный орган в движение по определенной траектории;
  • обеспечивающие простое перемещение (линейное или качающее) толкателя на заданное расстояние.

По пространственной конфигурации:

  • плоские, все траектории лежат в одной плоскости;
  • пространственно кулачковый механизм, двигается по сложным траекториям.

По типу толкательного механизма различают:

По траектории его движения:

  • линейная;
  • качающееся;
  • вращение (винтовое движение).

Кулачковый механизм с роликовым толкателем по признаку смещения осей подразделяется на:

  • аксиальные (ось вращения диска находится в плоскости толкателя)
  • дезаксиальные оси вращения и линия движения толкателя разнесены в пространстве.

Дистанцию такого разнесения называют дезаксиалом (e).

Кулачковые регулировочные механизмы часто строятся по дезаксиальной схеме.

Обозначение выключателей на строительных схемах

Одна из схем, которой пользуются строители-электромонтажники, не является принципиальной электрической. Это схема расположения. Она выполняется по своим правилам и имеет отличные от принципиальных схем обозначения.

Иногда потребителям нужно согласовать проект, как заказчики они имеют на это полное право. Им показывают схему, в которой им сложно разобраться и они часто принимают ее как есть, а потом возятся с переделками. Ниже показано обозначение розеток и выключателей на чертежах.

Обозначение выключателей на чертежах указывают небольшим кружком, от которого исходит отрезок под углом примерно 60° к горизонтали. Выключатель открытой установки обозначают короткой черточкой вправо, отложенной от конца отрезка. Число таких черточек показывает число полюсов. Число независимых выключателей в группе показано повторением вертикальных отрезков, сдвинутых на угол 30°: выключатель четырехклавишный будет изображаться четырьмя отрезками, тройной выключатель – тремя и т. д.

Розетки обозначаются полуокружностью, выпуклой вверх (чаще сегментом круга). От окружности откладывают столько отрезков, сколько полюсов имеет розетка. Если розетка имеет клемму для защитной земли, то в верхней точке дуги изображается горизонтальная касательная.

На картинках были изображены накладные розетки и выключатели. Скрытые отличаются от них только вертикальной чертой в сегменте круга (розетки) и Т-образной черточкой вместо Г-образной при выключателях. Наружные розетки и выключатели, предназначенные для работы на улице (вне помещений), обозначаются аналогично показанным, но они имеют более высокий класс защиты: от IP44 до IP55, что соответственно означает: «отсутствие щелей от 1 мм и выше и защита от брызг любого направления» и «частичная защита от пыли и кратковременная защита от струи любого направления».

Для отличия таких розеток на чертежах, а также выключателей, для них применяют заливку черным сплошным цветом. Все остальные правила для обозначений остаются прежними. Для более подробных сведений об обозначениях электрики на строительных чертежах обращайтесь к ГОСТ 21.614–88.

Назначение и область использования

Кулачковый механизм воплощает вращение в линейное перемещение небольшой амплитуды. В работе это короткое линейное движение применяется для выполнения следующих операций:

  • сцепление или расцепление частей механизма;
  • закрытие либо открытие клапана;
  • возвратно- поступательно движение какого-нибудь исполнительного органа изделия;
  • повторение исполнительным органом наперед заданной в формы поверхности кулачка сложной пространственной пути.

Данные операции находят использование в следующих устройствах и системах:

  • управление клапанами двигателей внутреннего сгорания;
  • топливные и масляные насосы;
  • приводы гидравлических и пневматических тормозных систем;
  • распределитель зажигания в устаревшем карбюраторном двигателе;
  • привод изменения передач в трансмиссиях байков и прочего двухтактного транспорта;
  • швейные машины;
  • музыкальные механизмы: механический орган, шарманка, шкатулка и т. п.;
  • транспортно- технологичные машины;
  • таймеры с механическим приводом;
  • сельскохозяйственные механизмы, комбайны, осуществляющие уборку и сортировку корнеплодов или злаков;

Более того, очень широкая сфера применения кулачковых пар лежит там, где требуется не потушить, а, наоборот, создать вибрацию. Они находят использование в вибромашинах, служащих для уплотнения грунта или полов из бетона в строительстве. Горная техника, применяемая при добыче рудных материалов, также создает сортировку тонких фракций на вибростолах, приводимых в движение кулачковыми парами.

Еще одна значимая область использования – точные приборы для измерений и средства механической и электромеханической автоматизации. Контактный прибор для определения величины давления и остальные прецизионные приборы широко применяют кулачковые пары для передачи вращения стрелки на шток, замыкающий контактные группы.

Применяются кулачковые устройства в малых и средних металлообрабатывающих станках для переключения передач, периодического перемещения рабочих органов.

В производственных технологических установках в химической, пищевой и фармацевтической промышленности устройства применяются для дозированной подачи сыпучего сырья к месту последующей переработки.

Не обращая внимания на быстрое совершенствование электронных средств управления, старая проверенная кулачковая пара смело держит собственные позиции там, где требуется неоднократно повторить однообразные движения очень точно.

Если вы нашли погрешность, пожалуйста, выдилите фрагмент текста и нажмите Ctrl+Enter.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий