Класс точности

Определение класса точности.

Для того, чтобы пользоваться качественным оборудованием для измерений различных величин необходимо знать погрешность, с какой проводит измерения именно это устройство. Технические характеристики любого измерительного прибора включают в себя следующие показатели, которые обычно указывают на шкале:

  • единицу измерения величины, которую определяет устройство;
  • система принципа действия (магнитоэлектрическая, электромагнитная, индукционная и другие)
  • класс точности прибора;
  • положение шкалы устройства (горизонтальное, вертикальное или наклонное);
  • напряжение, при котором проводилось испытание изоляции корпуса;
  • заводской номер и год выпуска.
  • род тока, при котором необходимо проводить измерения ( постоянный, переменный).

Одной из характеристик технического измерительного средства является класс точности – величина, определяемая несколькими погрешностями, а именно их пределами. Формула для определения этой характеристики устройства выглядит следующим образом:

γ = ΔXнаиб / Xпр⋅× 100%, где

ΔXнаиб – максимальная абсолютная погрешность измерений;

Xпр – наибольшее значение на шкале прибора.

Класс точности прибора называют еще приведенной погрешностью. По этому показателю все измерительные аппараты делят на восемь классов:

  1. 0,05;
  2. 0,1;
  3. 0,2;
  4. 0,5;

Приборы, имеющие такие группы погрешностей, называют прецизионными, от английского слова «precision», означающего в переводе на русский – точность. Это самые точные устройства и их применяют при проведении лабораторных исследований.

Следующие четыре класса точности:

  1. 1,0;
  2. 1,5;
  3. 2,5;
  4. 4.

используют в технической промышленности, и они так и называются – технические.

Производители измерительных технических устройств проставляют его класс точности на шкале, если пометки нет – аппарат считается внеклассным, а его погрешность в измерениях больше 4%.

Класс точности приборов является характеристикой точности в отношении самих устройств, однако этот показатель не определяет точность проведенных измерений. К примеру, класс точности амперметров характеризуется границами абсолютной погрешности и не гарантирует , что в эти показания не внесут коррективы такие показатели как действие магнитного поля, частота переменного тока и перепады температур, а также другие внешние раздражители.

Классы точности приборов могут быть проставлены как латинской буквой, так и арабской или римской цифрами. Числовые арабские значения означают, что основным показателем точности является приведенная погрешность и должны учитываться наибольшее и наименьшее значения ряда измерений. Римская цифра при обозначении класса точности говорит о том, что точность прибора определялась по значению относительной погрешности.

Если при маркировке класса точности прибора на шкале указано дробное число ( к примеру –« 0,01/0,02»), то это означает, что приведенная погрешность при максимальной шкале равна ±0,01%, а в начале ±0,01%. Это применимо в высокочастотных электроизмерительных приборах.

Все значения погрешностей любых измерительных приборов нормируются и принятыми стандартами и не должны превышать этих значений. Эти показатели могут иметь различные значения, в зависимости от условий эксплуатации измерительного устройства, однако в целом предельные границы этих погрешностей не должны выходить за рамки нормированного значения. Способы определения норм допускаемых погрешностей и маркировка классов точности приборов устанавливаются ГОСТом.

Технические характеристики

Согласно документации, на схемах сети вольтметры принято обозначение окружностью с вписанной латинской буквой «V». На русских смехах он может заменяться на русскую букву «В». Более того, первая цифра после буквы в маркировке отображает тип устройства и специфику его использования. Например, В2 — вольтметр для постоянного тока, В3 — для переменного, В4 — для импульсного и т.д.

Вам это будет интересно Разновидности бытовых и промышленных электрических выключателей

Аппарат В3-38 для использования в сетях переменного тока

Оценка характеристик прибора включает в себя следующие компоненты:

  • Диапазон измерений. Он ограничивается наименьшим и наибольшим показателем, который способен изменить аппарат. Современные устройства обладают диапазоном от милливольт до киловольт. Промышленные аналоги же способны измерять как меньшие, так и большие напряжения;
  • Точность измерений. Далеко не каждый домашний тестер отличается повышенной точностью измерений. Как уже было сказано, это зависит от его внутреннего сопротивления. Новые вольтметры при сравнительно небольших размерах обладают маленькими погрешностями измерений;
  • Диапазон частот. Показывает чувствительность прибора к тем или иным сигналам с разными частотами, регистрируемых в сети;
  • Температура и другие факторы. Эти параметры определяют показатели, при которых аппарат обладает минимальной погрешностью измерений, доступной для него;
  • Собственно само внутреннее сопротивление (импеданс). Чем выше этот параметр, тем вольтметр более точен.

Цифровые устройства практически полностью вытеснили аналоговые

Важно! Технические характеристики аналоговых приборов сильно зависят от чувствительности магнитоэлектрического прибора. Чем меньше его ток полного отклонения, тем более высокосопротивительные резисторы можно использовать

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Какие классы точности бывают, как обозначаются

Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже

Согласно ГОСТ 8.401-80 в системе СИ классы точности обычно помечается латинской буквой, часто с добавлением индекса, отмеченного цифрой. Чем меньше погрешность, соответственно, меньше цифра и буквенное значение выше по алфавиту, тем более высокая точность.

Класс точности обозначается на корпусе устройства в виде числа обведенного в кружок, обозначает диапазон погрешностей измерений в процентах. Например, цифра ② означает относительную погрешность ±2%. Если рядом со знаком присутствует значок в виде галочки, это значит, что длина шкалы используется в качестве вспомогательного определения погрешности.

  • 0,1, 0,2 – считается самым высоким классом
  • 0,5, 1 – чаще применяется для устройств средней ценовой категории, например, бытовых
  • 1,5, 2,5 – используется для приборов измерения с низкой точностью или индикаторов, аналоговых датчиков

Классификация контрольно-измерительных приборов


Сейчас существует огромное количество устройств, с помощью которых проверяют данные и показатели. Поэтому все контрольно-измерительные приборы можно классифицировать по нескольким основным признакам: 1. По роду измеряемой величины. Или по назначению. Например, измеряющие давление, температуру, уровень или состав, а также состояние вещества и т. д. При этом у каждого есть свои стандарты качества и точности, например как класс точности счетчиков, термометров и др.

2. По способу получения внешней информации. Здесь идет более сложная классификация:

— регистрирующие — такие устройства самостоятельно записывают все входные и выходные данные для последующего анализа;

— показывающие — эти приборы дают возможность исключительно наблюдать за изменениями какого-либо процесса;

— регулирующие — данные устройства автоматически настраиваются на значение измеряемой величины;

— суммирующие — здесь берется какой-либо промежуток времени и прибор показывает общее значение величины за весь период;

— сигнализирующие — такие устройства оборудованы специальной звуковой или световой системой оповещения или датчиками;

— компарирующие — это оборудование призвано сравнивать определенные величины с соответствующими мерами.

3. По расположению. Различают местные и дистанционные измерительные устройства. При этом последние имеют возможность передавать полученные данные на любое расстояние.

Рекомендации экспертов

Какие рекомендации от специалистов следует учитывать при покупке:

Покупаемый АМ в любом случае должен быть внесен в соответствующий Государственный документ, к примеру, реестр измерительного оборудования

Чтобы убедиться в этом, при покупке АМ продавец должен предоставить соответствующий сертификат, обратите внимание на то, чтобы он был действующим.
Все АМ должны быть проверены, а на корпусе конструкции должен быть соответствующим штамп от государственного органа. Также этот штамп может быть не на корпусе, а в техническом паспорте АМ

Обратите внимание на то, что на штампе также должна иметься дата поверки, необходимо, чтобы эта дата была не позже последнего квартала нынешнего года.
Любой покупаемый АМ должен быть новым — никакие признаки установки или демонтажа не допускаются. Также на корпусе АМ не должно быть следов повреждений либо длительного хранения. Комплект любого АМ должен быть дополнен техническим паспортом.
По мнению специалистов, наиболее оптимальной является покупка АМ в металлическом корпусе, а смотровое отверстие должно быть выполнено из технического стекла. Если отверстие будет пластиковым, в жестких условиях использования оно будет мутнеть, а пластмассовый корпус быстро потрескается.
В том случае, если вы планируете оптовую закупку, то один из АМ можно разобрать и произвести диагностику качества сборки конструкции. Проверьте все механизмы, материал, из которого они изготовлены, а также качество крепления всех компонентов.

Извините, в настоящее время нет доступных опросов.

Важность и актуальность классов манометров

Подбирая манометр (сокращено прибор принято обозначать «ДМ») для обычных бытовых условий, пользователи редко обращают внимание на его группу по погрешностям

Как мы уже сказали, точность не особо важна для таких целей как контроль мПа (бар, атм) в шинах, когда пользователю достаточно знать ориентировочную величину или же отклонения на доли делений и даже на несколько отметок на общую картину и состояние оборудования не повлияют. Но высокая корректность показаний всегда желательная для котлов, отопления, водоснабжения, для насосов этого оборудования и для подобных целей.

А также группа по точности — один из параметров, на который обязательно обращают внимание, когда корректность измерений особо необходима. Для ЖКУХ, промышленности, производства, для чувствительного к давлению оборудования, где отклонение даже на одно деление приводит к износу оснащения, авариям (центральные системы водоснабжения, отопления, котельные)

Как расшифровываются характеристики оборудования

Наибольший (максимальный) предел — это максимальное значение, которое может отобразиться на дисплее электронных весов. Если масса груза больше данной цифры, устройство не покажет точного значения.

Наименьший (минимальный) предел — это масса, на которую отреагируют датчики устройства. Если положить на платформу груз с меньшим весом, цифры на экране не появятся.

Цена одного деления — минимальный шаг при взвешивании. У механических весов это интервал между двумя цифрами шкалы. Выражается в мг, г. кг.

Цена одного поверочного деления электронных (e). Условная характеристика, выраженная в мг, г. кг.

Число поверочных делений. Чтобы рассчитать характеристику, следует разделить максимальный предел на число поверочных делений.

ТОЧНОСТЬ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Качество измерительного прибора характеризуется его точностью, которая оценивается погрешностью измерения.

Из рассмотрения вышеизложенного вытекает, что безукоризненно точное измерение электрических величин технически невозможно, т.е. истинное значение измеряемой величины не может быть установлено с помощью измерительного прибора. Поэтому за истинное значение принимают действительное значение измеряемой величины.

Разность между значением величины, измеренной с помощью рабочего прибора а,, и истинным ее значением а называегся абсолютной погрешностью измерения:

Чем меньше абсолютная погрешность в сравнении с измеряемой величиной, тем выше качество измерения. Для характеристики качества измерения вводится относительная погрешность измерения:

Так как величины аи ах мало отличаются друг от друга, то часто вместо а подставляют величину а„ полученную непосредственно из опыта. На значение абсолютной погрешности измерения влияют главным образом погрешность отсчета показаний, несовершенство методов измерения и погрешность самих приборов.

Погрешности электроизмерительных приборов подразделяются на основные и дополнительные. Основные погрешности характеризуют качество самого прибора, дополнительные погрешности обусловлены отклонением условий эксплуатации от нормальных. Отношение наибольшего значения основной абсолютной погрешности к верхнему пределу измерения прибора определяет качество самого прибора. Это отношение называется приведенной погрешностью. Приведенную погрешность обычно выражают в процентах, и по значению приведенной погрешности все приборы подразделяются на 8 классов точности: 0.05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4,0. Приборы, имеющие приведенную погрешность более 4%, считаются внеклассными (это щитовые и учебные приборы). Однако класс точности прибора не определяет точность самого измерения. Для доказательства этого положения в случае, когда абсолютная погрешность не зависит от а, умножим и разделим выражение относительной погрешности на верхний предел измерения ам:

Относительная погрешность измерения больше класса точности прибора во столько раз, во сколько раз верхний предел измерения больше значения измеряемой величины. Поэтому измерения электрических величин рекомендуется проводить во второй половине шкалы прибора. При этом погрешность измерения не превосходит удвоенного значения приведенной погрешности. Измерения во второй половине шкалы возможны только при правильном подборе приборов по верхнему значению измеряемой величины.

Абсолютная погрешность, взятая с обратным знаком, называется поправкой А: А = -Да, откуда а = ах + А , т.е. поправка есть та величина, которую следует алгебраически прибавить к показаниям прибора, чтобы получить действительное значение измеряемой величины. Значение соответствующих поправок позволяет повысить точность измерения рабочим прибором. Поправки к оцифрованным делениям шкалы находятся путем поверки рабочего прибора (сравнением показаний рабочего и образцового приборов).

1 IV [/VJblUIUIUI’l II 1 * in

строится график поправок, который позволяет найти поправку к каждому значению измеряемой величины. График поправок к прибору снимают при движении стрелки справа налево (ход назад) и слева направо (ход вперед). Как видно из рисунка 4.2.1, эти кривые не совпадают, что объясняется изме-

По ПРЯЛ/ ПКТЯТЯМ ИЯМРПРНИЯ

нением направления действия момента сил трения относительно вращающего момента. Поэтому результаты измерений необходимо усреднить, что и показано на рисунке 4.2.1.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство

Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

В соответствии с ГОСТ 8.401-80 все средства измерений делятся на классы точности, которые устанавливают в стандартах или технических условиях, содержащих технические требования к СИ, подразделяемым по точности. Классы точности СИ конкретного типа выбирают соответственно из ряда классов точности, регламентированных в стандартах или других НД на СИ рассматриваемого вида. В данных стандартах устанавливают конкретные требования к метрологическим характеристи­кам, отражающим уровень точности СИ этого класса.

Классы точности присваивают средствам измерений при их разработке с учетом результатов государственных приемочных испытаний. Как было указано выше, пределы основной и дополнительной погрешностей следует выражать в форме абсолютных, относительных или приведенных погрешностей в зависимости от характера измерения погрешностей в пределах диапазона измерений конкретного вида СИ.

Пределы допускаемой основной погрешности, выражаемые абсолютной систематической погрешностью, наиболее часто используются для характеристики погрешностей, возникающих по вине схем СИ. Однако их значение можно уменьшить за счет регулировки определенных элементов схем, вариации параметров влияния которых заметно сказывается на так называемых аддитивных и мультипликативных погрешностях.

Обозначение классов точности СИ в документации может осуществляться в форме абсолютных по­грешностей или относительных погрешностей (таблица 4.1).

При этом классы точности следует обозначать в документации прописными буквами латинского алфавита или римскими цифрами. В необходимых случаях к обозначению класса точности буквами латинского алфавита допускается добавлять индексы в виде арабской цифры. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, должны соответствовать буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.

В эксплуатационной документации на СИ конкретного вида, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности данного СИ.

Стандарт ГОСТ 8.401—80 предусматривает определенные обозначения классов точности на СИ. В соответствии с указанным стандартом условные обозначения классов точности наносятся на циферблаты, щитки и корпуса СИ. Они включают числа, прописные буквы латинского алфавита или римские цифры. За исключением технически обоснованных случаев, вместе с условным обозначением класса точности на циферблат, щиток или корпус СИ должны быть нанесены обозначения стандартов или ТУ, устанавливающих технические требования к этим СИ.

На СИ одного и того же класса точности, которые эксплуатируются в различных условиях, следует наносить обозначение условий их эксплуатации, предусмотренные в стандартах или ТУ на СИ.

Правила построения и примеры обозначения классов точности приведены в таблице 4.1.

Таблица 4.1. Формулы вычисления погрешностей и обозначение классов точности СИ

Какие классы точности бывают, как обозначаются

Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже

Согласно ГОСТ 8.401-80 в системе СИ классы точности обычно помечается латинской буквой, часто с добавлением индекса, отмеченного цифрой. Чем меньше погрешность, соответственно, меньше цифра и буквенное значение выше по алфавиту, тем более высокая точность.

Приборы, способные выполнять множество различных замеров, могут быть одновременно более двух классов.

Класс точности обозначается на корпусе устройства в виде числа обведенного в кружок, обозначает диапазон погрешностей измерений в процентах. Например, цифра ② означает относительную погрешность ±2%. Если рядом со знаком присутствует значок в виде галочки, это значит, что длина шкалы используется в качестве вспомогательного определения погрешности.

  • 0,1, 0,2 – считается самым высоким классом
  • 0,5, 1 – чаще применяется для устройств средней ценовой категории, например, бытовых
  • 1,5, 2,5 – используется для приборов измерения с низкой точностью или индикаторов, аналоговых датчиков

Примечание. На корпусе высокоточных измерителей, класс может не наносится. Обозначение таких устройств как правило выполняется особыми знаками.

Виды электросчётчиков

Индукционные

Индукционные – представляют собой знакомое практически каждому устройство. Их характерной особенностью является постоянно вращающееся колёсико за прозрачным стеклом. Оно крутиться с разной скоростью и зависит это от расхода электричества. Чем он выше, тем быстрее раскручивается колёсико.

Показания можно увидеть на специальных барабанах с изображёнными цифрами. Принцип работы у него следующий. В конструкции есть 2 катушки. Одна из них катушка напряжения. Она ограничивает переменный ток, а также служит неким барьером для различного рода помех.

Ещё её функция заключается в создании магнитного потока, который эквивалентен проходящему через неё напряжению. Вторая катушка называется токовой. Она также производит магнитный поток, но только он соразмерен силе тока.

Оба магнитных потока в итоге проникают через специальный алюминиевый диск. Поскольку они имеют параболическую траекторию, то проходят сквозь вышеупомянутую преграду 2 раза. За счёт этого и возникают силы, которые заставляют алюминиевый диск крутиться.

Вследствие этого ось, на которой он расположен, оказывает действие на те самые барабаны с цифрами посредством зубчато-винтовой передачи. Таким образом, показания зависят от скорости вращения диска из алюминия, а она, в свою очередь, зависит от магнитных потоков, которые создаются катушками.

В итоге, чем выше напряжения в электросети, тем больше будут цифры на барабанах. Такие счётчики достаточно широко распространены даже в век высоких технологий.

К их достоинствам можно отнести:

  1. Высокую надёжность.
  2. Долговечность.
  3. Абсолютную независимость от случайных перепадов напряжения.
  4. Невысокую цену.

Однако есть у них несколько недостатков:

  1. Низкий класс точности.
  2. Фактическое отсутствие какой-либо защиты от хищения электроэнергии.
  3. Большой расход электричества самим счётчиком.
  4. Неизбежный рост погрешности при малых нагрузках.
  5. Большие габаритные размеры.

3.4. Расчет погрешности измерительной системы

Измерительная система предназначена для восприятия, переработки и хранения измерительной информации в общем случае разнородных физических величин по различным измерительным каналам (ИК). Поэтому расчет погрешности измерительной системы сводится к оценке погрешностей ее отдельных ИК.

Результирующая относительная погрешность ИК составит

,

где х — текущее значение измеряемой величины; предел данного диапазона измерения канала, при котором относительная погрешность минимальна; — относительные погрешности, вычисленные соответственно в начале и конце диапазона.

Поскольку ИК есть цепь различных воспринимающих, преобразовательных и регистрирующих звеньев, то для определения , (х) необходимо, прежде всего, оценить СКО погрешностей этих m звеньев . Тогда результирующая СКО погрешности ИК будет

,

где — дополнительные погрешности отn влияющих факторов; ;— границы допускаемой основной погрешности;— квантильный коэффициент, определяемый законом распределения и доверительной вероятностью нахождения погрешности в заданном интервале.

Пример 3.2. Определить погрешность канала измерения мощности, структурная схема которого приведена на рис. 3.10. Здесь ТТ и ТН — соответственно трансформаторы тока и напряжения; — преобразователи соответственно мощности и тока; К — коммутатор; АЦП — аналого-цифровой преобразователь. Исходные данные: относительная погрешностьТТ, приведенная к началу диапазона измерения, составляет , а к концу —; относительная погрешность ТН; СКО погрешность преобразования мощности состоит из пяти составляю­щих: основной погрешности (1%); погрешности от пульсации (0,2%); дополнительной погрешности от измененияcos φ (0,15%); погрешности от колебания напряжения питания (0,1%) и от колебаний температуры окружающей среды (0,6%); cos φ= 0,85; и от изменения температуры окружающей среды; погрешность коммутатора на 128 каналов состоит из трех составляющих: погрешности падения напряжения открытого ключа (0,4%), от утечки тока в каждом из 127 закрытых ключом каналов (0,13%) и пульсации несущей частоты (0,06%);,

Рис. 3.10 Канал для измерения мощности

Решение. 1. Учитывая, что закон распределения погрешности неизвестен, примем его равномерным (k=1,73), и по формуле (3.11) находим и.

Для трансформатора напряжения . Принимая предыдущие условия,.

Для преобразователя мощности .

Тогда .

Здесь не учтена погрешность от колебаний окружающей температуры, так как эта погрешность жестко коррелирована (ρ=1) с погрешностью преобразователядля которого она составляет. В этом случае СКО погрешностей складываются алгебраическии учитываются уже в суммарной погрешности этих преобразователей.

Поскольку не имеет других погрешностей, тообщая погрешность преобразователей составит

4. Для коммутатора, приняв условия п. 1,

.

При этом .

5. Относительные погрешности АЦП заданы. Полагая закон их распределения равномерным, получим

6. Окончательно СКО ИК для конца диапазона составит

,

7. Приняв квантильный коэффициент k=1,95 для доверительной вероятности Р=0,95, окончательно для начала и конца диапазона измерений ИК получим

Тогда с учетом округлений по ряду (3.4)

Это расчетное значение погрешности следует умножить на коэффициент запаса, учитывающий старение элементов ИК. Обычно для рассмотренных звеньев ИК скорость старения не превышает 0,1% в год.

Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.

Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий