Хромель и его физические свойства, состав и характеристики

Термопара хромель-алюмель – коротко об основном

Как известно, термопара представляет собой два соединённых в одном конце проводника из различных материалов, являющихся частью устройства для замера температуры. Существуют различные комбинации проводников, но наиболее оптимальные термоэлектрические характеристики демонстрирует соединение из двух никелевых сплавов: хромель и алюмель. Дело в том, что именно данные материалы демонстрируют наиболее близкую к прямой термоэлектрическую характеристику, что необходимо для обеспечения высокой точности измерений. Прежде чем перейти к описанию свойств термопар следует остановиться на используемых в них сплавах. Хромель (НХ9,5) – это сплав 89-91% никеля и 8,7-10% хрома. Остальное занимают примеси таких материалов как кремний, медь, марганец и кобальт, причём содержание последнего составляет от 0,6 до 1,2%.

Алюмель (НМцАк2-2-1) состоит из 93-96% никеля и 1,8-2,5% алюминия, при высоком содержании марганца (1,8-2,2%) и кремния (0,8-1,2%). Данный сплав достаточно хорошо магнитен в отличие от маломагнитного хромеля.

Высокое содержание никеля обуславливает то обстоятельство, что изготовленная из этих сплавов термопарная проволока обладает высокой стойкостью к окислению. А, учитывая то, что термопара из данных материалов имеет практически линейную зависимость термоэлектродвижущей силы (термо-ЭДС) в диапазоне от 0 до 1000°С, то она часто используется в различных терморегуляторах.

Термопара из хромеля и алюмеля характеризуется высокой инерционностью

При кратковременном измерении максимальная температура может достигать 1300°С. Материалом для электродов термопар является термоэлектродная проволока, размерный ряд которой состоит из следующих диаметров (ГОСТ 1790-77): 0,2; 0,5; 0,7; 1,2; 3,2 миллиметра. При температуре 1300 °С используется проволока только диаметра 1,2 и 3,2 мм.

Проволока хромель и алюмель изолирована друг от друга и от корпуса керамическими одноканальными изоляторами с керамическими наконечниками на конце, защищающими от соприкосновения с металлическим чехлом.

Термопара из данных сплавов характеризуется высокой инерционностью. Исключением являются термопары хромель-алюмель типов ТХ-VII и ТХА-У-XV с низкими показателями инерционности. Проволока алюмель и хромель имеет обыкновенную устойчивость к механическим повреждениям кроме используемой в термопарах ТХА-420 и ТХА-430, которая обладает повышенной устойчивостью к вибрационным нагрузкам.

В основном термопары имеют стандартную конструкцию головки, но существуют и варианты с водозащищенными и брызгонепроницаемыми головками. Термопары ТХАП не имеют головки. Для ввода проводов используется гибкий шланг или штуцер.

Одним из основных преимуществ термоэлектродных проволок из хромеля и алюмеля является их устойчивость к окислению, что позволяет им надежно работать в окислительной среде благодаря появлению при нагреве тонкой защитной пленки, которая препятствует проникновению кислорода внутрь металла. Но при этом следует учесть, что длительная работа термопары в окислительной среде может привести к некоторому изменению термо-ЭДС, особенно при температурах 300-500 и 800-1000°С. Не рекомендуется их использовать в атмосфере с высоким содержанием серы, которая негативно влияет на оба материала — хромель и алюмель.

Особенности применения наиболее распространённых термопар

Технические характеристики зависят напрямую от материалов, из которых они произведены.

Тип J (железо-константановая термопара)

  • Не рекомендуется использовать ниже 0°С, т.к. конденсация влаги на железном выводе приводит к образованию ржавчины.
  • Наиболее подходящий тип для разряженной атмосферы.
  • Максимальная температура применения – 500°С, т.к. выше этой температуры происходит быстрое окисление выводов. Оба вывода быстро разрушаются в атмосфере серы.
  • Показания повышаются после термического старения.
  • Преимуществом является также невысокая стоимость.

Тип Е (хромель-константановая термопара)

  • Преимуществом является высокая чувствительность.
  • Термоэлектрическая однородность материалов электродов.
  • Подходит для использования при низких температурах.

Тип Т (медь-константановая термопара)

  • Может использоваться ниже 0°С.
  • Может использоваться в атмосфере с небольшим избытком или недостатком кислорода.
  • Не рекомендуется использование при температурах выше 400°С.
  • Не чувствительна к повышенной влажности.
  • Оба вывода могут быть отожжены для удаления материалов, вызывающих термоэлекрическую неоднородность.

Тип К (хромель-алюмелевая термопара)

  • Широко используются в различных областях от -100°С до +1000°С (рекомендуемый предел, зависящий от диаметра термоэлектрода).
  • В диапазоне от 200 до 500°С возникает эффект гистерезиса, т.е показания при нагреве и охлаждении могут различаться. Иногда разница достигает 5°С.
  • Используется в нейтральной атмосфере или атмосфере с избытком кислорода.
  • После термического старения показания снижаются.
  • Не рекомендуется использовать в разряженной атмосфере, т.к. хром может выделяться из Ni-Cr вывода (так называемая миграция), термопара при этом изменяет ТЭДС и показывает заниженную температуру.
  • Атмосфера серы вредна для термопары, т.к. воздействует на оба электрода.

Термопара типа К.

Тип N (нихросил-нисиловая термопара)

  • Это относительно новый тип термопары, разработанный на основе термопары типа К. Термопара типа К может легко загрязняться примесями при высоких температурах. Сплавляя оба электрода с кремнием, можно тем самым загрязнить термопару заранее, и таким образом снизить риск дальнейшего загрязнения во время работы.
  • Рекомендуемая рабочая температура до 1200°С (зависит от диаметра проволоки).
  • Кратковременная работа возможна при 1250°С.
  • Высокая стабильность при температурах от 200 до 500°С (значительно меньший гистерезис, чем для термопары типа К).
  • Считается самой точной термопарой из неблагородных металлов.

Общие советы по выбору термопар из неблагородных металлов

  • Температура применения ниже нуля – тип Е, Т
  • Комнатные температуры применения – тип К, Е, Т
  • Температура применения до 300°С – тип К
  • Температура применения от 300 до 600°С – тип N
  • Температура применения выше 600°С – тип К или N

Термопары из благородных металлов

Рекомендуемая максимальная рабочая температура 1350°С.
Кратковременное применение возможно при 1600°С.
Загрязняется при температурах выше 900°С водородом, углеродом, металлическими примесями из меди и железа. При содержании железа в платиновом электроде на уровне 0,1%, ТЭДС изменяется более, чем на 1 мВ (100°С) при 1200°С и 1,5 мВ (160°С) при 1600°С. Такая же картина наблюдается при загрязнении медью. Таким образом, термопары нельзя армировать стальной трубкой, или следует изолировать электроды от трубки газонепроницаемой керамикой.
Может применяться в окислительной атмосфере.
При температуре выше 1000°С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов

Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
Не рекомендуется применять ниже 400°С, т.к ТЭДС в этой области мала и крайне нелинейна.

Термопары из благородных металлов

Свойства те же, что и у термопар типа S.

Будет интересно Что такое статическое электричество и как от него избавиться

Тип В (платнородий-платинородиевая)

Рекомендуемая максимальная температура рабочего диапазона 1500°С (зависит от диаметра проволоки).
Кратковременное применение возможно до 1750°С.
Может загрязняться при температурах выше 900°С водородом, кремнием, парами меди и железа, но эффект меньше, чем для термопар типа S и R.
При температуре выше 1000°С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов

Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
Может использоваться в окислительной среде.
Не рекомендуется применение при температуре ниже 600°С, где ТЭДС очень мала и нелинейна.. Сводная таблица типов термопар

Сводная таблица типов термопар.

Что такое термопара

Термопары существуют благодаря такому явлению, как контактная разность потенциалов. Если два разных твердых проводника или полупроводника привести в плотный контакт друг с другом, то в окрестности места их соприкосновения образуются разделенные электрические заряды. При этом на внешних концах данных проводников возникнет разность потенциалов. Эта разность потенциалов окажется равна разности работ выхода для каждого металла, поделенной на заряд электрона.

Вопрос эксперту

Зачем нужен вольтметр при подборе термопары?

Вольтметром измерить контактную разность потенциалов не удастся, однако на вольт-амперной характеристике она себя проявит, так например она проявляет себя в транзисторе и в диоде на p-n переходе.

Понятно, что если сомкнуть такую пару в кольцо, то результирующая ЭДС будет равна нулю, а если с одной стороны ее все же оставить разомкнутой, то будет иметь место реальная ЭДС, величиной от десятых долей вольта до единиц вольт, в зависимости от того, что это за материалы.

Суть в том, что при соприкосновении, к примеру, двух металлов, система выходит из равновесия потому что химические потенциалы этих двух металлов не равны друг другу, в результате происходит диффузия электронов в сторону уменьшения их энергии, что в свою очередь приводит к изменению заряда и электрического потенциала приведенных в контакт металлов. Так в приконтактной области начинается рост электрического поля, и как следствие мы имеем то, что имеем.

Если теперь снова рассмотреть два этих проводника из разных металлов, только замкнутых в кольцо, когда суммарная ЭДС по замкнутому контуру станет равна нулю, то здесь получится два контактных места. Назовем эти места спаями. Итак, есть два спая двух разных проводников. Что если попробовать подогреть один из спаев, а второй оставить при комнатной температуре? Очевидно, что поскольку соединенные металлы разные, и в каждом спае присутствует контактная разность потенциалов, то спаи будут испытывать разное отклонение ЭДС, находясь при разных температурах.

Принцип работы термопары.

Эксперимент доказывает, что разность потенциалов между спаями будет пропорциональна разности их температур, так что можно ввести коэффициент пропорциональности, который называют термо-ЭДС. Для различных термопар термо-ЭДС будет разной. Если в разрезе такого кольца измерить напряжение, то в определенном интервале температур оно окажется почти строго пропорционально разности температур спаев. И даже если оставить только один спай (как на рисунке), и лишь его подогревать, а напряжение измерять между двумя концами, находящимися при одной и той же комнатной температуре, то все равно можно обнаружить очень четкую зависимость ЭДС от текущей температуры спая.

Чем отличаются параллельное и последовательное соединение конденсаторов.
Читать далее

Металлоискатель пират своими руками подробная инструкция.
Читать далее

Что такое подстроечный резистор: описание устройства и область его применения.
Читать далее

Так и работают термопары. Описанное явление относится к термоэлектрическим, а сам эффект, на базе которого работают все термопары, называется эффектом Зеебека, в честь его первооткрывателя — Томаса Зеебека. Сегодня можно встретить промышленные термопары, у которых, в зависимости от требуемого измеряемого диапазона температур, электроды изготавливают из специально подобранных сплавов.

К примеру термопары из сплавов хромель и алюмель имеют коэффициент термо-ЭДС, равный 40 микровольт на °C, и предназначены для измерения температур в диапазоне от 0 до +1100°C. А пара медь-константан, столь популярная в качестве демонстрационного пособия, позволяет измерять температуры от -185 до +300°C.

Применение термопар хромель-копель

Главным образом термопара хромель-копель используется в пирометрии, которая представляет собой совокупность бесконтактных (без контакта термоэлектрода с телом) методов измерения относительно высоких температур различных сред. Основное назначение датчиков на хромель-копелевой термопаре — непрерывный контроль над температурным режимом в промышленных и лабораторных установках с температурой от 200°С до 600°С. Ими измеряют температуру теплового излучения в печах обжига на керамических заводах, нагретых газов, пламени и т.п.

Термопара хромель-копель (ТХК)

Поскольку тела и жидкости при высоких температурах излучают тепловую энергию и удовлетворяют требованиям пирометрии, термопара хромель-копель применяется для измерения температуры плавления легкоплавких металлов, которая, как правило, ниже 600 °C. В их числе галлий (Тпл 30 °С), кадмий (Тпл 321 °С), висмут (Тпл 271 °С), таллий (Тпл 303 °С), цинк (Тпл 419 °С), индий (Тпл 157 °С), олово (Тпл 232 °С) и другие

Такие металлы чаще всего используются в электро- и радиотехнике, должны быть высокого качества, поэтому соблюдение температурного режима их плавления очень важно для итогового результата

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr). Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной а).

Термопара хромель-копель (ТХК)

Положительный электрод: сплав хромель (90% Ni, 10% Cr). Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь). Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Измерение температуры с помощью термопары

Если вы измеряете несколько известных температур с помощью этого устройства с металлическим спаем, вы можете выяснить формулу — математическое соотношение, — которое связывает ток и температуру. Это называется калибровкой: это как разметка шкалы на термометре. После калибровки у вас есть инструмент, который можно использовать для измерения температуры всего, что вам нравится.

Просто поместите один из металлических концов в ванну со льдом (или что-нибудь еще с точно известной температурой). Поместите другой металлический стык на предмет, температуру которого вы хотите узнать. Теперь измерьте происходящее изменение напряжения и, используя формулу, которую вы вычислили ранее, вы можете точно рассчитать температуру вашего объекта. Гениально! У нас есть пара металлов, которые соединены для измерения тепла (что по-гречески называлось «термос»). Вот почему это называется термопарой.

Что такое термопары на практике?

Для различных применений доступен широкий спектр различных термопар на основе металлов с высокой проводимостью, таких как железо, никель, медь, хром, алюминий, платина, родий и их сплавы . Иногда конкретная термопара выбирается исключительно потому, что она точно работает в определенном диапазоне температур, но условия, в которых она работает, также могут влиять на выбор (например, материалы в термопаре могут быть немагнитными , некоррозионными или стойкими к атакам. отдельными химическими веществами).

ПРИМЕНЕНИЕ

Хромированная сталь

Хром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Добавка хрома существенно повышает твердость и коррозийную стойкость сплавов. Использование Хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего Хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический Хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.
Значительное количество Хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый Хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr3+ – примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями Хрома протравливают ткани при крашении. Некоторые соли Хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO4, ZnCrO4, SrCrO4 – как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.
Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование).
Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

Хром (англ. Chromium) – Cr

Молекулярный вес52.00 г/моль
Происхождение названияот греч. χρῶμα — цвет, краска — из-за разнообразия окраски своих соединений.
IMA статусдействителен

Алюмель хромель термопара своими руками

ARV
_________________ если рассматривать человека снизу, покажется, что мозг у него глубоко в жопе удивительно, но при взгляде на многих сверху ничего не меняется.

Последний раз редактировалось ARV Пт авг 17, 2007 21:04:17, всего редактировалось 1 раз.

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/quote

Мышонок
Хромель: 90% Ni + 10% Cr Алюмель: 95% Ni + Al, Si, Mg Копель: 43,5% Ni + 56,5% Cu

_________________ Память очень интересная штука: бывает так, что запомнишь одно, а вспомнишь другое.

Дмитрий М
_________________ Ничто так не укрепляет взаимное доверие, как 100% предоплата! Дмитрий, RK3AOR.

Барсик
Термопары делал сваркой. Нужен понижающий трансформатор, который мог бы обеспечить ток, достаточный, чтобы сделать дома небольшую вольтову дугу. Подойдёт «школьный» латр ампер на 10. Концы проволочек, из которых должна состоять термопара скручиваются между собой. Самый конец скрутки откусывается. В непосредственной близости от скрутки оборачиваются медным проводом, который подключается к трансформатору. К другому выводу трансформатора подключается угольный электрод от солевой батарейки размера АА. Угольный электрод подносится к концу скрутки. Возникает дуга. В пламени дуги видно, как проволочки начинают оплавляться и место их соединения скручивается в маленький шарик. Как только образовался шарик, значит проволочки сварились. Угольный электрод отодвинуть, чтобы дуга погасла. Напряжение подобрать экспериментально, начиная с самого маленького. Главное не сцать, и всё получится.

В сегменте дискретных SiC MOSFET Wolfspeed на напряжение 650 В в массовое производство поступили новые изделия с сопротивлениями 25, 40 и 120 мОм. Третье поколение SiC MOSFET (C3MTM) — это широкий выбор транзисторов по сопротивлению открытого канала (Rds(on)), а также наименьшее среди аналогов сопротивление канала в дискретном выводном корпусе.

Мышонок
Я поддерживаю это мнение. Свободно продаются термопары для мультиметров по доступной цене (50-100 руб). В статье Лабораторный термометр даются сведения о термопарах, напомню:

_________________ Память очень интересная штука: бывает так, что запомнишь одно, а вспомнишь другое.

drugdug
Aheir Спичкой? ну не знаю. У нихрома в зависимости от марки температура плавления, конечно, гуляет, но всяко она больше 1200 градусов. Может, лучше взять зажигалку «турбированную» или миниатюрную газовую горелку?

Для справки, может, кто-нибудь вынесет что-нибудь полезное: https://www.fos.ru/fisika/12145.html

_________________ Оптимизм х (Опыт + Знания) = constПРИСТ расширяет ассортимент

gri
_________________ :]\/\/\/\/ххх\/\/\/\/\/\/ххх\/\/\/\/\/ххх\/\/\/\/\/\[: В мае на гульках 2 баяна порвал. одной лапой. Другая болела, после того, как потрогал паяльник.

физтеховиц
физтеховиц Сто раз подумай, прежде чем делать это.
Сэр Мурр
физтеховиц
Страница 1 из 1

Часовой пояс: UTC + 3 часа

Ссылки и примечания [ править ]

  1. ^ Concept Alloys, Inc. Интеллектуальная собственность получена 12 апреля 2016 г.
  2. ^ а б Джон П. Фрик, изд. (2000). Инженерные сплавы Вольдмана . ASM International. п. 264. ISBN 9780871706911.
  3. ^ Шнайдерман, Дебора; Уинтон, Алекса Гриффит (2016). Текстильные технологии и дизайн . Bloomsbury Publishing. п. 177. ISBN. 9781474261968.
  4. ^ Cernan, Юджин ; Дэвис, Дональд А. (2013). Последний человек на Луне: астронавт Юджин Сернан и космическая гонка Америки . Нью-Йорк: Издательство Св. Мартина. п. 134. ISBN 9781429971782.
  5. Его можно увидеть, когда астронавты отправляются на стартовую площадку, Файл: S66-34075.jpg
  6. ^ “Новый Apollo должен иметь огнестойкие материалы кабины и скафандры” . Популярная наука . Ноябрь 1967. с. 98.
  7. ^ «Аполлон Опыт Отчет – Разработка дополнительного модуля Автотранспортных Mobility» , НАСА Технической нота , NASA , стр. 12 ноября 1975 г., NASA TN D-8093
  8. ^ «Развертываемая антенна» . Годовой отчет Лаборатории реактивного движения за 1971 год . Лаборатория реактивного движения . 1972. с. 23.

Разделение ТХА по конструктивному исполнению

Зависимо от условий эксплуатации и назначения термопары бывают погружаемыми и поверхностными. В их конструкцию может входить или не входить защитный чехол. В свою очередь трубка-чехол может быть:

  • Стальной и выдерживать температурную нагрузку до 600 0С;
  • Состоять из жаростойкого материала и выдерживать до 11000С;
  • Фарфоровой – до 13000С;
  • Тугоплавкой – до 20000С.

Зависимо от конструкции креплений могут быть с наличием:

  • Неподвижного штуцера;
  • Подвижного штуцера;
  • Подвижного фланца.

Тип защиты выводов от внешней среды:

  • Обыкновенная головка;
  • Водозащищенная головка;
  • Специальная заделка выводных концов (без головки).

ТХА зависимо от сферы применения могут иметь специальную защиту от агрессивного воздействия. Незащищенные устройства обычно используют, когда окружающая среда не наносит никакого вреда электродам. Герметичное выполнение термопары необходимо при эксплуатации измерителя в условиях перепадов давления и температуры.

По устойчивости к механическим воздействиям:

  • Виброустойчивая конструкция;
  • Ударопрочная;
  • Обычная.

По числу зон контроля температуры:

  • Однозонные;
  • Многозонные.

По степени тепловой инерции:

  • С высокой инерционностью – до 3,5 минут;
  • Со средними значениями инерционности – до 60 секунд;
  • Малоинерционные – до 40 секунд;
  • Ненормированные.

Рабочая часть ТХА может быть произведена в разной длине: начиная от 120 мм. Максимальная длина однозонной термопары составляет 1580 мм, многозонной – 20000 мм.

Свойства хромеля

Большое распространение в изготовлении сплав получил благодаря собственным полезным характеристикам: жаростойкости и способности к термоэлектродвижущей силе. Температура работы хромеля может достигать 1100 °С, температура плавления — 1500 °С. Небольшая инерционность позволяет мерить даже несущественную разница критериев.

При нагреве почти что не становится шире, показатель его линейного увеличения равняется 12,8*10 -6 С, что считается критерием ниже среднего. Удельное сопротивление состава равняется 0,66 мкОм*м, что не дает возможность использовать его в области электрических проводников. Теплоемкость хромеля зависит от состава.

Соединение выделяют большая гибкость, ковкость и устойчивость к коррозии. Прочностный предел изделий из хромеля может достигать 550 Мпа. Нужно отметить маленькую массу материала.

Этот проводник выделяется большой стойкостью к влиянию множества химических соединений, в том числе кислотных сред. Фактически только одна слабость хромеля – соединения на основе серы, а именно серная кислота. Под влиянием химических соединений серы он утрачивает собственные характеристики, деформируется и рушиться.Необходимо выделить, что при физической деформации электродов искажаются показания измерений. Алюмель обладает очень одинаковыми параметрами.

Аналогичным образом, главные свойства сплава хромеля:

  1. жаростойкость;
  2. устойчивость к деформированию;
  3. эластичность;
  4. стойкость к средовым влияниям.

Гидрокарбонат натрия

Для его производства используются разные материалы, в том числе известняк или мел. Полезные свойства для организма, которыми обладает гидрокарбонат натрия, известны многим. Часто его используют при заболеваниях десен и горла, изжоге, для разжижения мокроты при кашле. В промышленности физические свойства соды и мела очень востребованы. Оба этих вещества используются в строительстве, отделке, изготовлении материалов, лакокрасочной и другой продукции. Что касается производства гидрокарбоната кальция, то применение одного только мела считается неэкономичным вариантом. Как выше было сказано, эта порода очень хорошо впитывает влагу, вследствие чего изменяются ее механические характеристики. Это, в свою очередь, негативно сказывается на ходе технологического процесса.

Принцип действия

Работа термопары основана на принципе термоэлектрического эффекта. Это явление было открыто физиком из Германии Т. Зеебеком в начале XIX века. Его суть состоит в следующем:

  • Если соединить два термоэлектрода из разных металлов или сплавов в замкнутую электрическую цепь, а их рабочую поверхность подвергнуть воздействию разных температур, то по ней начнет протекать электрический ток.
  • Цепь, состоящая только из двух разных электродов, называется термоэлементом.
  • Работает термопара за счет электродвижущей силы, которая вызывает ток в цепи и зависит от материала элементов и разности температуры их соединения.
  • Элемент, из которого поступает ток от горячего соединения к холодному, считается положительным электродом, а от холодного к горячему — отрицательным.
  • Если говорить простым языком, то зная температуру одного соединения, которая поддерживается обычно постоянной, в результате измерения значения тока можно узнать величину нагрева другого соединения.

Хромель-алюминиевые термопары

Данные схемы термопар применяются в большинстве случаев для производства различных датчиков и щупов, позволяющих контролировать температуру в промышленном производстве.

Их отличительными особенностями можно назвать довольно низкую цену и огромный диапазон измеряемой температуры. Они позволяют зафиксировать температуру от -200 до +13000 градусов Цельсия.

Нецелесообразно применять термопары с подобными сплавами в цехах и на объектах с высоким содержанием серы в воздухе, так как этот химический элемент негативно влияет как на хром, так и на алюминий, вызывая нарушения в функционировании устройства.

Конструктивные особенности

Если относиться более скрупулезно к процессу замера температуры, то эта процедура осуществляется с помощью термоэлектрического термометра. Основным чувствительным элементом этого прибора считается термопара.

Сам процесс измерения происходит за счет создания в термопаре электродвижущей силы. Существуют некоторые особенности устройства термопары:

  • Электроды соединяются в термопарах для измерения высоких температур в одной точке с помощью электрической дуговой сварки. При замере небольших показателей такой контакт выполняется с помощью пайки. Особенные соединения в вольфрам-рениевых и вольфрамо-молибденовых устройствах проводятся с помощью плотных скруток без дополнительной обработки.

  • Соединение элементов проводится только в рабочей зоне, а по остальной длине они изолированы друг от друга.
  • Метод изоляции осуществляется в зависимости от верхнего значения температуры. При диапазоне величины от 100 до 120 °C используется любой тип изоляции, в том числе и воздушный. При температуре до 1300 °C применяются трубки или бусы из фарфора. Если величина достигает до 2000 °C, то применяется изоляционный материал из оксида алюминия, магния, бериллия и циркония.
  • В зависимости от среды использования датчика, в которой происходит замер температуры, применяется наружный защитный чехол. Выполняется он в виде трубки из металла или керамики. Такая защита обеспечивает гидроизоляцию и поверхностное предохранение термопары от механических воздействий. Материал наружного чехла должен выдерживать высокую температуру воздействия и обладать отличной теплопроводностью.

Вам это будет интересно  Киловатт — производная единица измерения мощности

Быстродействие измерения

Динамическое быстродействие первичного преобразователя может быть важно, если температура технологического процесса меняется быстро и в систему управления необходимо подавать быстро меняющиеся входные сигналы. Первичный преобразователь, установленный непосредственно в технологическую линию, будет иметь большее быстродействие, чем первичный преобразователь с защитной гильзой

Важно отметить, что если никакой защитной гильзы не применяется, чувствительный элемент подвергается воздействию среды технологического процесса и его невозможно заменить, не прерывая потока, для чего часто требуется останавливать технологический процесс и опорожнять технологическую систему. Указания по проектированию на большинстве производств не позволяют использовать первичные преобразователи без защитных гильз

Такие установки гораздо менее безопасны с точки зрения возможной разгерметизации технологических установок, в них возможны более частые выходы из строя первичных преобразователей из-за воздействия неблагоприятных условий технологического процесса, и они часто требуют дорогостоящих остановок технологического процесса для замены отказавшего первичного преобразователя. Применение защитных гильз решает эту проблему.

Но если используется защитная гильза, очевидно, что время реакции увеличивается (быстродействие уменьшается) из-за возрастания тепловой массы узла. Ключом к оптимизации быстродействия является уменьшение массы при сохранении достаточной физической прочности, чтобы узел выдерживал давление технологического процесса и силы, создаваемые потоком среды. Защитные гильзы меньшего диаметра обеспечивают более высокое быстродействие, так как требуется нагревать и охлаждать меньшее количество материала

Также важно правильно установить первичный преобразователь, чтобы добиться высокого быстродействия. Первичный преобразователь должен быть достаточно длинным, чтобы его конец касался дна защитной гильзы для обеспечения хорошей теплопроводности

Диаметр первичного преобразователя также должен быть таким, чтобы он плотно входил в защитную гильзу и воздушный зазор между первичным преобразователем и защитной гильзой был минимален. Кроме того, быстродействие улучшается путем использования подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем. Характеристики измеряемой среды также влияют на быстродействие, особенно ее скорость потока и плотность. Быстро движущаяся среда передает тепло и меняющуюся температуру лучше, чем медленно движущаяся, а более плотные среды (жидкости) являются лучшими проводниками тепла, чем среды с малой плотностью (газы).

Сравнение быстродействия систем измерения температуры, использующих термопару без защитной гильзы или ТС без защитной гильзы в системе с текущей водой показало, что заземленный конец термопары имеет быстродействие примерно в 2 раза выше, чем подпружиненный датчик ТС. При измерениях в потоке воздуха ТС работает несколько быстрее, чем термопара.

Однако эти преимущества существенно нивелируются, если не исчезают полностью, когда первичный преобразователь устанавливается в защитную гильзу. Масса защитной гильзы настолько велика по сравнению с массой первичного преобразователя, что она очевидно оказывает доминирующее влияние на быстродействие системы.

При использовании первичного преобразователя диаметром 6 мм (1/4 дюйма) в системе измерения температуры воды, быстродействие термопары и ТС примерно одинаковое, а при использовании первичного преобразователя диаметром 3 мм, термопара несколько быстрее, чем ТС. При измерении температуры воздуха быстродействие термопар и ТС примерно одинаковое при использовании как 3-миллиметровых (1/8 дюйма), так и 6-миллиметровых первичных преобразователей.

Поскольку в очень малом количестве технологических процессов используются для измерения первичные преобразователи без защитных гильз, изначально присущее термопарам преимущество в быстродействии значительно нивелируется. Вдумчивый разработчик выбирает наилучший первичный преобразователь для данной системы, основываясь на множестве других факторов, и не руководствуется вводящими в заблуждение утверждениями, которые можно слышать так часто: «термопары всегда быстрее, чем ТС».

Эффект Зеебека

На данном физическом явлении основан принцип работы термопары. Суть заключается в следующем: если соединить между собой два проводника из разных материалов (иногда используются полупроводники), то по такому электрическому контуру будет циркулировать ток.

Таким образом, если нагревать и охлаждать спай проводников, то стрелка потенциометра будет колебаться. Засечь ток также может позволить и гальванометр, подключенный в цепь.

В том случае, если проводники выполнены из одного и того же материала, то электродвижущая сила не будет возникать, соответственно, нельзя будет измерить температуру.

Способы получения

У алюминия очень прочная химическая связь с кислородом. Из-за высокой реакционной способности восстановиться металлу из алюмосиликатов и природных оксидов сложнее, чем другим подобным веществам. На это также влияет температура плавления его руд — корунды и бокситы.

Невозможно восстановить элемент путем обжига оксида с углеродом, что помогает при работе с железом. У алюминия слишком близкое взаимодействие с кислородом, у углерода этот показатель гораздо ниже. Получение металла возможно методом неполного восстановления, в ходе которого выделяется промежуточный продукт — карбид алюминия. Затем он разлагается при температуре 1900−2000 градусов, образуя природное вещество.

Для производства 1 т чернового алюминия необходимо 35 кг его фторида, 65 кг криолита, 600 кг графитовых анодных электродов, 1920 кг глинозема и 61 ГДж электрической энергии. Получить металл в лабораторных условиях можно с помощью метода, найденного Фридрихом Велером. Необходимо восстановить вещество калием его безводного хлорида. Реакция протекает без участия кислорода при нагревании.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий