Подождите, есть загвоздка …
Однако в этих утверждениях о том, что w-BN и лонсдейлит сильнее алмаза, есть загвоздка. Эти утверждения основаны на программе моделирования, запущенной на компьютере, а не на физической проверке. Поскольку эти элементы чрезвычайно трудно найти, они еще не прошли физических испытаний для определения их твердости.
Тем не менее их моделирование предполагает, что эти более твердые, чем алмаз, материалы обладают хорошей термической и химической стабильностью; если мы сможем синтетически производить их в достаточно больших количествах, они могут оказаться переломными. Их можно было использовать как мощные фрезы, помещая их поверх других режущих инструментов. Кроме того, их стабильность при более высоких температурах сделала бы их полезными в космических полетах к Венере или Меркурию, которые имеют обжигающе высокие температуры.
Что ж, алмаз может теоретически потерять свою корону самого твердого материала, но он всегда останется королем драгоценных камней. Более того, утверждение о том, что лонсдейлит является самым твердым веществом, еще не подтверждено физически.
Как это выполняется?
Тест на твердость по Виккерсу невероятен тем, что его можно проводить как по микротвердости, так и по макротвердости с максимальной испытательной нагрузкой около 50 кг.
Тест твердости по Виккерсу выполняется путем приложения контролируемой силы к индентору, который обычно представляет собой ромбовидную пирамиду квадратной формы, в течение определенного периода времени.
В испытаниях на твердость по Виккерсу используются две различные силы, такие как микродиапазоны от 10 до 100 граммов и макро диапазоны от 1 до 100 кг.
В обоих диапазонах используется один и тот же индентор, поэтому значения твердости постоянны во всех диапазонах твердости металла.
Подготовка проб является обязательной для получения точных результатов. Требуется образец достаточно маленького размера, чтобы надлежащим образом поместиться в тестер.
Кроме того, для точного измерения и правильной формы углубления препарат должен иметь гладкую поверхность. Это также гарантирует, что индентор сможет удобно удерживать объект перпендикулярно.
Другие характеристики
Если алмаз самый твердый минерал, означает ли это, что если его невозможно сломать? К сожалению, это не так. Дело в том, что в разных направлениях кристалла его твердость неодинакова. На этом свойстве как раз и основана его огранка, шлифовка и распиловка.
Поэтому прочность алмаза невелика, от сильного удара он может расколоться на части. Это несколько ограничивает его применение. Высокая твердость обуславливает его высокую износостойкость и сопротивление стиранию, но не гарантирует, что алмаз не сломается.
Кажется, что если алмаз имеет такую высокую твердость то как минимум должен быть очень плотным. На самом деле его плотность составляет всего около 3,5 грамма на сантиметр кубический. Это в три раза больше, чем воды, но, например, в шесть раз меньше, чем у золота.
Тем не менее для камня такая плотность является достаточной, можно даже сказать большой, что также влияет на его прочность. Бриллианты имеют характерный блеск и игру цвета, которые объясняются таким параметром, как показатель преломления. Показатель преломления бриллиантов составляет примерно 2,4, что является наибольшим значением для драгоценного камня. Еще одним важным параметром является дисперсия. Дисперсия представляет собой различие показателей преломления в зависимости от длины волны применяемого освещения.
Шкала Мооса
Чем больше показатель дисперсии, тем сильнее выражена игра цветов. У алмазов этот показатель высокий, что и дает ему уникальное сияние. Сочетание преломления и дисперсии, а также твердости минерала, которая позволяет отполировать его без малейшего изъяна или трещины, составляют вместе тот необходимый набор, который делает этот камень самым дорогим в мире.
Алмаз имеет еще одно интересное свойство — он характеризуется самой высокой теплопроводностью, которая является наибольшей среди всех твердых тел. Это позволяет рассматривать его в качестве перспективного полупроводника для применения в электронике. Однако это возможно только при условии, что научатся синтезировать дешевые алмазы. Кремниевые полупроводники могут работать при температуре до 100 градусов по Цельсия в то время, как микросхема на алмазах будет выдерживать намного большие температуры.
Алмаз не растворяется в кислотах и щелочах. Обладает низким коэффициентом трения в воздухе, что происходит за счёт образования пленок абсорбера на поверхности камня. Температура плавления составляет 3500-4000 градусов Цельсия при определенных условиях давления. Если он находится на воздухе при температуре около 860 градусов, начинается процесс горения. Если его нагревать до высокой температуры без доступа кислорода, он переходит в углерод за несколько минут.
https://youtube.com/watch?v=3IEa_r0rwz4
Оценка механических свойств по испытаниям на твёрдость
Связь между результатами проверки на твёрдость по Роквеллу и прочностными характеристиками материалов исследовались такими учёными-материаловедами, как Н. Н. Давиденков, М. П. Марковец и др.
Используются методы определения предела текучести по результатам проверки на твёрдость вдавливанием. Такая связь была найдена, например, для высокохромистых нержавеющих сталей после различных режимов термообработки. Среднее отклонение результатов методов для конического алмазного индентора составляло всего +0,9 %.
Были также проведены исследования по нахождению связи между значениями твёрдости и другими прочностными характеристиками, определяемыми при растяжении, такими, как предел прочности (временное сопротивление), относительное сужение и истинное сопротивление разрушению.
Факторы, влияющие на точность измерения
- Важным фактором является толщина образца. Не допускается проверка образцов с толщиной менее десятикратной глубины проникновения наконечника.
- Ограничивается минимальное расстояние между отпечатками (3 диаметра между центрами ближайших отпечатков).
- Параллакс при считывании результатов с циферблата стрелочных приборов.
Замер твердости по методу Виккерса
Измерение твердости по методу Викерса проводят в соответствии с ГОСТ 2999-75. К испытуемым образцам выдвигаются следующие требования: для стальных изделий минимальная толщина образца должна быть больше диагонали отпечатка в 1,2 раза; для цветных металлов определяется в соответсвии с ГОСТ 2999-75 по номограмме.Схема измерения твердости по методу Викерса показана на рисунке 4. Радиус кривизны криволинейных поверхностей должен быть не менее 5 мм. Поверхность испытуемого образца должна иметь шероховатость не более 0,16 мкм по ГОСТ 2789-73 и быть свободной от окисной пленки и посторонних веществ.
Рисунок. 4 Схема измерения твердости по методу Викерса
Основными недостатками метода являются зависимость измеряемой твёрдости от приложенной нагрузки или глубины внедрения индентора, особенно это проявляется при маленьких нагрузках и высокие требования к тщательной подготовке исследуемой поверхности. Достоинства метода в том, что можно измерять твердость тонких образцов, азотированных и цементированных слоев, твердость зерна и отдельных включений.
Обозначение твердости
Как и любая физическая величина, твёрдость имеет свое обозначение. Из-за наличия множества методик измерений, каждая из них требует своего обозначения во избежание путаницы. Следует заметить, что часть методов выдает искомую величину как безразмерную, но по методу Виккерса твердость измеряется как кгс/мм2. В обозначениях размерность не пишут, подразумевая ее наличие.
Твердость по Виккерсу обозначается символами HV, где после символов может стоять значение силы и времени выдержки:
- HV 500 – стандартная нагрузка 30 кгс (294,2 Н) при времени выдержки 10-15 с;
- HV 150 10/40 – нагрузка 10 кгс (98,07 Н) при выдержке 40 с.
Перевод значений, измеренных другими методами, производится при помощи стандартных таблиц, которые входят в комплекты документации на измерительные приборы, а также присутствуют в справочной литературе.
Единицы измерения твердости
Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.
Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.
Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:
- сплавы железа – 30 кгс/мм²;
- медь и никель – 10 кгс/мм²;
- алюминий и магний – 5 кгс/мм².
Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.
Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.
В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.
Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.
Методика отображает тип индентора и прилагаемую к нему нагрузку.
Тип шкалы | Инструмент | Прилагаемая нагрузка, кгс |
А | Конус из алмаза, угол вершины которого 120° | 50-60 |
В | Шарик 1/16 дюйма | 90-100 |
С | Конус из алмаза, угол вершины которого 120° | 140-150 |
В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.
Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.
Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.
К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:
Н□ 0,195 = 2800, где
□ — форма наконечника;
0,196 — нагрузка на наконечник, Н;
2800 – численное значение твердости, Н/мм².
Как определить твердость металла по методике Бринелля: особенности
В качестве индентора, то есть самого элемента, который вдавливается в заготовку, используется идеальный шарик диаметром от 1 до 10 миллиметров. Он изготавливается из легированных соединений или из сплава карбида и вольфрама. Регламентируется производство таких шаров ГОСТом 3722 81.
Время, в которое происходит статическое, то есть неподвижное вдавливание, – от 10 до 180 секунд. Этот параметр зависит от материала. Самые минимальные временные промежутки – для чугуна и стали, а более продолжительные – для цветных металлов.
Максимальная нагрузка, которая может быть измерена таким способом, – 450 или 650 НВ, в зависимости от того, из чего сделан шарик.
На образец для правильной деформации подбирается воздействие, посмотрим по формулам в таблице, как можно их вычислить, учитывая, что D – это диаметр шара:
Проверяемый объект | Математически вычисленное изменение |
Свинец или олово | 1d^2 |
Стальные соединения, титан, никель | 30d^2 |
Легкие сплавы | от 2,5d^2 до 15d^2 |
Чугун | 10d^2 или 30d^2 |
Медь и составы с ее добавлением | 5d^2, 10d^2, 30d^2 |
Алгоритм применения метода Бринелля
- Проверяется сам аппарат и тело для внедрения – шар.
- Определяется максимальное усилие.
- Твердомер запускается.
- Измеряется глубина вдавливания.
- Производятся математические вычисления.
Применяемая формула НВ=P/F, где:
- P – нагрузка;
- F – площадь отпечатка.
Следует отметить, что это самый распространенный способ.
Алмазы не непобедимы…
Прочитав это, вы можете почувствовать, что бриллианты непобедимы, но на самом деле это не так. Алмаз становится уязвимым при очень высоких температурах. Когда вы нагреваете алмаз выше 800 °C, его химические и физические свойства больше не остаются неизменными. Нарушение характерной прочности алмаза. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали. Характерная твердость алмаза нарушается. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали.
Поэтому ученые и исследователи давно ищут сверхтвердый материал, обладающий лучшей химической стабильностью. В 2009 году исследователи, работавшие в сотрудничестве из Шанхайского университета Цзяо Тонг и Университета Невады, заявили, что нашли два материала, которые могут победить алмаз в его собственной игре!
Две предложенные потенциальные претендентки на самое твёрдое вещество были: Нитрид бора вюрцита (w-BN) и Лонсдейлит.
Вюрцит нитрид бора (w-BN)
Вюрцит нитрид бора (w-BN) имеет структуру, аналогичную структуре алмаза, но он состоит из атомов бора и азота, а также углерода. Вюрцит нитрид бора чрезвычайно редок и может быть обнаружен только после определенного типа извержения вулкана. Проведенное исследователями в 2009 году моделирование гексагональной структуры w-BN показало, что она на 18% тверже стали. Кроме того, w-BN химически более стабилен, чем алмаз при высоких температурах.
Лонсдейлит
Лонсдейлит состоит только из атомов углерода, как и алмаз, хотя и с другой структурой. И угадайте, что… лонсдейлит даже сильнее, чем w-BN! Интересно, что лонсдейлит — это космическое вещество, которое получается, когда богатый графитом метеорит ударяется о Землю. Моделирование вдавливания показало, что лонсдейлит на 58% прочнее алмаза, что делает лонсдейлит самым твердым веществом на Земле.
Суть метода
Метод определения твердости по Виккерсу основан на исследовании зависимости глубины проникновения алмазного конуса (индентора) в исследуемый материал от величины усилия. После снятия усилия на поверхности образца остается отпечаток, соответствующий глубине погружения индентора. Ввиду того, что геометрические размеры индентора известны и строго регламентированы, вместо глубины погружения определяют площадь отпечатка в поверхностном слое испытуемого материала.
Определение твердости по Виккерсу возможно для веществ с самыми высокими значениями, поскольку в качестве испытательного конуса используется пирамидка из алмаза, который имеет максимальную известную твёрдость.
Индентор выполнен в виде четырехугольной пирамиды с углами между гранями 136°. Такой угол выбран для того, чтобы сблизить значения метода Виккерса с методом Бриннеля. Таким образом, значения твердости в пределах 400-450 единиц практически совпадают, особенно, в области меньших значений.
Метод Виккерса
Твердость по Виккерсу определяют путем вдавливания пирамиды в испытуемый образец под действием силы определенной величины. Зная приложенную силу и площадь отпечатка можно определить твердость поверхности испытуемого материала.
Вместо расчета площади отпечатка используются значения измеренных диагоналей ромба, между которыми находится прямая зависимость.
Итоговый результат твёрдости определяют по формуле:
Как правило, при измерениях по Виккерсу никаких вычислений по приведенной формуле не применяют, а используют табличные значения, исходя из приложенного усилия, времени воздействия и результирующей площади следа.
Значение приложенной силы регламентировано и составляет 30 кг. Время воздействия на поверхность обычно составляет 10-15 с. Это самые распространенные значения, однако во многих ситуациях необходимо воздействовать на материал образца при помощи иных значений силы.
Величина нагрузки зависит от измеряемого материала (его предполагаемой твердости). Чем тверже поверхность испытуемого образца материала, тем больше нагрузка. Это вызвано стремлением к уменьшению погрешности при определении площади и уменьшения влияния вязкости материала.
Для снижения погрешности также предъявляются ограничения по размерам испытуемого образца. Минимальная толщина образца должна быть в 1,2-1,5 раз больше предполагаемой диагонали отпечатка в зависимости от вида металла (меньшая величина соответствует стали, большая предназначена для цветных металлов). Расстояние между краем образца или краем предыдущего отпечатка и центром отпечатка должно быть не менее 2,5 величины диагонали.
Особые требования предъявляются также к чистоте поверхности. Ее шероховатость не должна превышать 0,16 мкм, что означает необходимость в полировке поверхности.
Таблица для определения твердости по Виккерсу
Малые линейные размеры образца требуют применение микроскопа дл измерения размеров отпечатка, причем, чем тверже образец, тем более четкую картинку должен передавать микроскоп для сохранения точности измерения.
Характеристики методики Виккерса
Еще один очень простой способ, который отличается скоростью и точностью, но дороговизной оборудования. Перечислим особенности:
- Используется алмазная пирамидка с более тупым углом – 136 градусов в вершине.
- Не допускается деформация более 100 кгс.
- Выдерживают время очень короткое – от 10 до 15 секунд.
- Измерять можно параметры любого материала, в том числе особенно прочного, а также сталей, которые прошли термическую обработку.
Последовательность исследования
Упрощенный алгоритм:
- Проверьте поверхностный слой детали, а также все оборудование.
- Рассчитайте допустимое усилие.
- Установите образец, закрепите его.
- Запустите аппарат и спустя 10-15 секунд проанализируйте итог.
Числа твердости HRC для некоторых деталей и инструментов
Детали и инструменты | Число твердости HRC |
Головки откидных болтов, гайки шестигранные, рукоятки зажимные | 33…38 |
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона | 35…40 |
Шлицы круглых гаек | 36…42 |
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам | 40…45 |
Пружинные и стопорные кольца, клинья натяжные | 45…50 |
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги | 50…60 |
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса | 56…60 |
Рабочие поверхности калибров — пробок и скоб | 56…64 |
Копиры, ролики копирные | 58…63 |
Втулки кондукторные, втулки вращающиеся для расточных борштанг | 60…64 |
Методы измерения твердости
Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.
Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:
HB=2P/(πD*√(D 2 -d 2 ),
- гдеР – прикладываемая нагрузка, кгс;
- D – окружность шарика, мм;
- d – окружность отпечатка, мм.Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:сплавы из железа — 30D 2 ;медь и ее сплавы — 10D 2 ;баббиты, свинцовые бронзы — 2,5D 2 .
Условное изображение принципа испытания
Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.
Метод измерения твердости по Роквеллу
Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h
Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.
Математическая формула для расчета:HV=0.189*P/d 2 МПаHV=1,854*P/d 2 кгс/мм 2 Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.
Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.
Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.
После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.
d, мм | HB | HRA | HRC | HRB |
2,3 | 712 | 85,1 | 66,4 | — |
2,5 | 601 | 81,1 | 59,3 | — |
3,0 | 415 | 72,6 | 43,8 | — |
3,5 | 302 | 66,7 | 32,5 | — |
4,0 | 229 | 61,8 | 22 | 98,2 |
5,0 | 143 | — | — | 77,4 |
5,2 | 131 | — | — | 72,4 |
Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Твердостью металла называют его свойство оказывать сопротивление пластической деформации при контактном воздействии стандартного тела-наконечника на поверхностные слои материала.
Испытание на твердость – основной метод оценки качества термообработки изделия.
Определение твердости по методу Бринелля. Метод основан на том, что в плоскую поверхность под нагрузкой внедряют стальной шарик. Число твердости НВ определяется отношением нагрузки к сферической поверхности отпечатка.
Метод Роквелла (HR) основан на статическом вдавливании в испытываемую поверхность наконечника под определенной нагрузкой. В качестве наконечников для материалов с твердостью до 450 HR используют стальной шарик. В этом случае твердость обозначают как HRB. При использовании алмазного конуса твердость обозначают как HRA или HRC (в зависимости от нагрузки).
Твердость по методу Виккерса (HV) определяют путем статического вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды. При испытании измеряют отпечаток с точностью до 0,001 мм при помощи микроскопа, который является составной частью прибора Виккерса.
Метод Шора. Сущность данного метода состоит в определении твердости материала образца по высоте отскакивания бойка, падающего на поверхность испытуемого тела с определенной высоты. Твердость оценивается в условных единицах, пропорциональных высоте отскакивания бойка.
Способ измерения твердости методом царапания
Способами царапания и резания твердость определяется соответственно как сопротивление материала царапанию или резанию. Способ царапания разработал Моос в начале XIX в.; им были предложена шкала твердости минералов по способности одного наносить царапины на поверхности другого. Эта десятибалльная шкала (от талька № 1 до алмаза № 10) используется в минералогии, а также для оценки твердости технической керамики и монокристаллов.
При определении твердости всеми методами (кроме микротвердости) измеряют интегральное значение твердости материала (усредненное для всех структурных составляющих).
Значения твердости нельзя однозначно переводить в значения других механических свойств материала. Однако определение твердости является эффективным способом сравнения друг с другом однотипных материалов и контроля их качества.
Как определить твердость металла по методике Бринелля: особенности
В качестве индентора, то есть самого элемента, который вдавливается в заготовку, используется идеальный шарик диаметром от 1 до 10 миллиметров. Он изготавливается из легированных соединений или из сплава карбида и вольфрама. Регламентируется производство таких шаров ГОСТом 3722 81.
Время, в которое происходит статическое, то есть неподвижное вдавливание, – от 10 до 180 секунд. Этот параметр зависит от материала. Самые минимальные временные промежутки – для чугуна и стали, а более продолжительные – для цветных металлов.
Максимальная нагрузка, которая может быть измерена таким способом, – 450 или 650 НВ, в зависимости от того, из чего сделан шарик.
На образец для правильной деформации подбирается воздействие, посмотрим по формулам в таблице, как можно их вычислить, учитывая, что D – это диаметр шара:
Проверяемый объект | Математически вычисленное изменение |
Свинец или олово | 1d^2 |
Стальные соединения, титан, никель | 30d^2 |
Легкие сплавы | от 2,5d^2 до 15d^2 |
Чугун | 10d^2 или 30d^2 |
Медь и составы с ее добавлением | 5d^2, 10d^2, 30d^2 |
Алгоритм применения метода Бринелля
- Проверяется сам аппарат и тело для внедрения – шар.
- Определяется максимальное усилие.
- Твердомер запускается.
- Измеряется глубина вдавливания.
- Производятся математические вычисления.
Применяемая формула НВ=P/F, где:
- P – нагрузка;
- F – площадь отпечатка.
Следует отметить, что это самый распространенный способ.
Проверка твердости металла
В самом начале следует уточнить, что такое твердость? Это то, что называется сопротивлением данного материала остаточной деформации, вызванной индентором на небольшой площади поверхности материала. В зависимости от свойств (в данном случае) металла и величины деформации различают испытания на нанотвердость, микротвердость и твердость. Отдельные методы измерения требуют работы на очищенной, отшлифованной – а иногда даже полированной – и ровной поверхности. Чаще всего используются три метода: Бринелля, Роквелла и Виккерса. Шкала твердости металлов зависит от используемого метода.
Неопределенность измерения твердости по Виккерсу
D.1 Общие требования
Косвенный метод вычисления неопределенности, о котором идет речь в настоящем приложении, касается неопределенности результата измерений твердости, связанной с измерительными возможностями твердомеров при калибровке эталонных мер твердости (CRM). Вычисленная по этому методу неопределенность отражает совокупный эффект от всех источников неопределенности.
Косвенный метод не заменяет прямого метода оценки вклада отдельных источников неопределенности в суммарную неопределенность измерения твердости для твердомера. Косвенный метод рекомендуется для контроля твердомеров в период между поверками.
D.2 Алгоритм вычисления неопределенности
Алгоритм, предназначенный для вычисления неопределенности ul косвенным методом, приводится в таблице D.1. Расширенную неопределенность U получают умножением ul на коэффициент расширения k = 2. Таблица D.1 содержит всю необходимую для расчета информацию.
D.3 Отклонение твердомера на основе измерений по эталонной мере твердости
Отклонение b твердомера (которое часто именуют ошибкой) получают путем вычитания:
– среднего значения результатов измерений пяти отпечатков в процессе испытания твердомера по эталонной мере твердости;
– значения, присвоенного эталонной мере твердости при калибровке.
На основе отклонения определяют поправку, которую вносят в результат измерения и которую учитывают при вычислении неопределенности.
D.4 Алгоритмы вычисления неопределенности
D.4.1 Процедура без использования статистики измерений по эталонной мере твердости (метод 1)
Метод 1 (М1) – это упрощенный метод, который не используют при расчете неопределенности.
В М1 ошибку определяют на основе допустимой погрешности твердомера относительно теоретической шкалы, которую используют для определения источника неопределенности uE. При этом не предусматривается определение поправки, которую следует вносить при измерениях.
Алгоритм вычисления U подробно представлен в таблице D.1, а также в , .
(D.1)
При этом результат измерений следующий
(D.2)
D.4.2 Алгоритм, базирующийся на статистике измерений по эталонной мере твердости (метод 2)
В отличие от метода 1 (М1) использование метода 2 (М2) приводит к меньшим значениям неопределенности. Ошибка (отклонение) b (таблица D.1, этап 10) предположительно носит систематический характер. В рекомендовано вносить поправки в результат измерений для коррекции систематической ошибки. В М2 предполагается, что поправки определены, и тогда при вычислении неопределенности, если поправки включены в результат измерений, систематическую ошибку считают равной 0 либо Ucorrувеличивают на b. Алгоритм вычисления Ucorr объясняется в таблице D.1, а также см. , .
(D.3)
При этом результат измерения определяют в следующем виде
(D.4)
или
(D.5)
В зависимости от того, включают ли отклонение (ошибку) в качестве поправки шкалы твердомера, используют одно или другое выражение для представления результата измерения.
D.5 Представление результата измерения
При выражении результата измерения неопределенности указывают метод. Если метод не определен, считается что использован метод 1, формула (D.2) (таблица D.1, этап 12).
Алмазы не непобедимы…
Прочитав это, вы можете почувствовать, что бриллианты непобедимы, но на самом деле это не так. Алмаз становится уязвимым при очень высоких температурах. Когда вы нагреваете алмаз выше 800 °C, его химические и физические свойства больше не остаются неизменными. Нарушение характерной прочности алмаза. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали. Характерная твердость алмаза нарушается. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали.
Поэтому ученые и исследователи давно ищут сверхтвердый материал, обладающий лучшей химической стабильностью. В 2009 году исследователи, работавшие в сотрудничестве из Шанхайского университета Цзяо Тонг и Университета Невады, заявили, что нашли два материала, которые могут победить алмаз в его собственной игре!
Две предложенные потенциальные претендентки на самое твёрдое вещество были: Нитрид бора вюрцита (w-BN) и Лонсдейлит.
Вюрцит нитрид бора (w-BN)
Вюрцит нитрид бора (w-BN) имеет структуру, аналогичную структуре алмаза, но он состоит из атомов бора и азота, а также углерода. Вюрцит нитрид бора чрезвычайно редок и может быть обнаружен только после определенного типа извержения вулкана. Проведенное исследователями в 2009 году моделирование гексагональной структуры w-BN показало, что она на 18% тверже стали. Кроме того, w-BN химически более стабилен, чем алмаз при высоких температурах.
Лонсдейлит
Лонсдейлит состоит только из атомов углерода, как и алмаз, хотя и с другой структурой. И угадайте, что… лонсдейлит даже сильнее, чем w-BN! Интересно, что лонсдейлит — это космическое вещество, которое получается, когда богатый графитом метеорит ударяется о Землю. Моделирование вдавливания показало, что лонсдейлит на 58% прочнее алмаза, что делает лонсдейлит самым твердым веществом на Земле.