Что такое неодимовый магнит и в каких сферах он применяется

Кривая намагничивания

Начиная с ненамагниченного состояния, когда Н увеличивается от нуля, вследствие ориентации всех атомных моментов по направлению внешнего поля быстро увеличиваются М и B, изменяясь вдоль участка «а» основной кривой намагничивания (см. рисунок ниже).

Когда выровнены все атомные моменты, М приходит к своему значению насыщения, и дальнейшее увеличение В происходит исключительно из-за приложенного поля (участок b основной кривой на рис. ниже). При уменьшении внешнего поля до нуля индукция В уменьшается не по первоначальному пути, а по участку «c» из-за сцепления атомных моментов, стремящегося сохранить их в том же направлении. Кривая намагничивания начинает описывать так называемую петлю гистерезиса. Когда Н (внешнее поле) приближается к нулю, то индукция приближается к остаточной величине, определяемой только атомными моментами:

Вr = μ (0 + Мг).

После того как направление H изменяется, Н и М действуют в противоположных направлениях, и B уменьшается (участок кривой «d» на рис.). Значение поля, при котором В уменьшается до нуля, называется коэрцитивной силой магнита BHC. Когда величина приложенного поля является достаточно большой, чтобы сломать сцепление атомных моментов, они ориентируются в новом направлением поля, а направление M меняется на противоположное. Значение поля, при котором это происходит, называется внутренней коэрцитивной силой постоянного магнита МНC. Итак, есть две разных, но связанных коэрцитивных силы, связанных с постоянным магнитом.

На рисунке ниже показаны основные кривые размагничивания различных материалов для постоянных магнитов.

r

Вес магнитных устройств

Однако, подбирая пруток, кольцо или брусок из неодима, следует не забывать, что сила на отрыв, которой они обладают, зависит не только от свойств металла, но и от массивности самого изделия. Маленькие и большие устройства имеют разные притягивающие характеристики, даже если их состав абсолютно идентичен. Таким образом, неодимовый магнит N35 в виде диска 70х50 наверняка окажется мощнее и, соответственно, эффективнее, чем цилиндр 40х10, пусть, и сделанный из сплава класса 52. Хотя, точно определить характеристики того или иного товара можно лишь с помощью специальных измерительных приборов.

Двигатель на постоянных магнитах

В последние десятилетия широкое распространение получили вентильные двигатели постоянного тока. Такой агрегат представляет собой собственно электродвигатель и электронный коммутатор его обмотки якоря, выполняющий функции коллектора. Электродвигатель представляет собой синхронный двигатель на постоянных магнитах, расположенных на роторе, как и на рис. выше, с неподвижной обмоткой якоря на статоре. Электронный коммутатор схемотехнически представляет собой инвертор постоянного напряжения (или тока) питающей сети.

Основным преимуществом такого двигателя является его бесконтактность. Специфическим его элементом является фото-, индукционный или холловский датчик положения ротора, управляющий работой инвертора.

Проблемы с коррозией

Эти неодимовые магниты сильно корродировали после пяти месяцев погодных условий.

Спеченный Nd2Fe14B, как правило, уязвим для коррозия, особенно вдоль границы зерен спеченного магнита. Этот тип коррозии может вызвать серьезное повреждение, включая превращение магнита в порошок из мелких магнитных частиц или скалывание поверхностного слоя.

Эта уязвимость устраняется во многих коммерческих продуктах путем добавления защитного покрытия, предотвращающего воздействие атмосферы. Никелирование или двухслойное медно-никелевое покрытие являются стандартными методами, хотя также используются покрытия другими металлами или полимерные и лаковые защитные покрытия.

Температурные эффекты

Неодим имеет отрицательный коэффициент, означающий коэрцитивную силу вместе с плотностью магнитной энергии (BHМаксимум) уменьшается с температурой. Магниты из неодима, железа и бора имеют высокую коэрцитивную силу при комнатной температуре, но при повышении температуры выше 100 ° C (212 ° F) коэрцитивная сила резко уменьшается до температуры Кюри (около 320 ° C или 608 ° F). Это падение коэрцитивной силы ограничивает эффективность магнита в условиях высоких температур, таких как ветряные турбины, гибридные двигатели и т. Д. Диспрозий (Dy) или тербий (Tb) добавляется, чтобы ограничить падение производительности из-за изменений температуры, что делает магнит еще более дорогим.

Наушники СД или ДВД привод

Наверняка у каждого есть старые наушники. Большинство этих устройств недолговечны, и многие меломаны меняют их по нескольку раз в год. Если мы говорим об обычных вкладышах, купленных в магазине бытовой техники, магнит там маленький, и напоминает микробатарейку размером с таблетку. При этом сила на отрыв подобных деталей впечатляет. С помощью такого магнитика, например, можно подвесить достаточно крупные плоскогубцы или столовые приборы.

Где еще взять неодимовый магнит в быту? В оптической головке любого цифрового проигрывателя, где обычно находится по 2 магнитных пластины. В зависимости от производителя они могут быть разными, но почти всегда это крошечные устройства прямоугольной формы, немногим больше сим-карты.

Индукция и намагниченность

Атомные моменты суммируются и образуют магнитный момент всего постоянного магнита, а его намагниченность M показывает величину этого момента на единицу объема. Магнитная индукция B показывает, что постоянный магнит является результатом внешнего магнитного усилия (напряженности поля) H, прикладываемого при первичном намагничивании, а также внутренней намагниченности M, обусловленной ориентацией атомных (или доменных) моментов. Ее величина в общем случае задаётся формулой:

B = µ (H + M),

где µ является константой.

В постоянном кольцевом и однородном магните напряженность поля H внутри него (при отсутствии внешнего поля) равна нулю, так как по закону полного тока интеграл от нее вдоль любой окружности внутри такого кольцевого сердечника равен:

H∙2πR = iw=0 , откуда H=0.

Следовательно, намагниченность в кольцевом магните:

M= B/µ.

В незамкнутом магните, например, в том же кольцевом, но с воздушным зазором шириной lзаз в сердечнике длиной lсер, при отсутствии внешнего поля и одинаковой индукции B внутри сердечника и в зазоре по закону полного тока получим:

Hсер l сер + (1/ µ)Blзаз = iw=0.

Поскольку B = µ(Hсер + Мсер), то, подставляя ее выражение в предыдущее, получим:

Hсер(l сер + lзаз) + Мсер lзаз=0,

или

Hсер = ─ Мсер lзаз(l сер + lзаз).

В воздушном зазоре:

Hзаз = B/µ,

причем B определяется по заданной Мсер и найденной Hсер.

Характеристика поверхности и толщина притягиваемого предмета

Если мы говорим о мощности магнитных изделий, нужно упомянуть и о том, что сила на отрыв зависит не только от массивности устройства или от свойств материала, но и от характеристик поверхности, притягиваемой неодимом. Если мы читаем в описании товара, что неодимовый магнит N45 обладает силой на отрыв 100 кг, это означает, что он способен удерживать предметы весом центнер при условии, что эти предметы будут иметь достаточную толщину (минимум 2 сантиметра), а также при условии, что их поверхность будет абсолютно гладкой. Чем меньшая толщина и больше неровностей на поверхности, тем, соответственно, потребуется меньшая сила на отрыв.

Неодимовый магнит, маркировка, изготовление, применение.

Неодимовый магнит – это изделие с высокими магнитными свойствами, в состав которого входят химические элементы: неодим, бор и железо. Сплав из таких элементов имеет тетрагональную кристаллическую структуру, которая обозначается формулой: Nd2Fe14B. От обычного постоянного магнита, неодимовый отличается повышенной силой притяжения, а так же имеет более длительный срок размагничивания (потери составляют примерно от 0.1% до 2 % намагниченности в течение 10 лет).

Неодимовые магниты могут отличаться размерами, формой (шар, куб, диск, кольцо, пруток и пр.), магнитной силой и допустимыми рабочими температурами.

Неодим и его применение

Маркировка неодимовых магнитов

Изготовление неодимовых магнитов

Применение неодимовых магнитов

Рабочая температура

Заметим, что на характеристики неодимового магнита никак не влияют низкие температуры

Однако при нагревании изделия из неодима теряют часть своих свойств, поэтому, выбирая товар, обратите внимание на его маркировку, обозначаемую буквой и цифрами:

  • N – Normal. Этот тип изделий применяют в условиях, где максимальная температура меньше 80 °С;
  • M – Medium стоит приобрести, если Вы планируете использовать оборудование до 100 °С;
  • H – класс High применим для достаточно высоких температур, но не выше отметки 120 °С;
  • SH – при температуре выше 150 °С неодимовый магнит теряет свойства и разрушается;
  • UH – Ultra High. Само название указывает на внушительную термоустойчивость изделия;
  • EH – Extra High. Магниты с такой маркировкой используют в местах, где температура может подниматься до 200 °С.

Приложения

Существующие магнитные приложения

Кольцевые магниты

Большинство жестких дисков имеют сильные магниты.

В этом фонарике с ручным приводом используется неодимовый магнит для выработки электроэнергии.

Неодимовые магниты заменили алнико и ферритовые магниты во многих из множества применений в современной технологии, где требуются сильные постоянные магниты, потому что их большая сила позволяет использовать меньшие и более легкие магниты для данного приложения. Вот несколько примеров:

  • Головные приводы для компьютера жесткие диски
  • Механический электронная сигарета пусковые переключатели
  • Замки для дверей
  • Музыкальные колонки и наушники
  • Магнитные подшипники и муфты
  • Настольные ЯМР-спектрометры
  • Электродвигатели: (Использование неодимовых магнитов в электродвигателях может снизить потребление энергии вдвое.)

    • Аккумуляторные инструменты
    • Серводвигатели
    • Подъем и компрессор моторы
    • Синхронные двигатели
    • Шпиндель и шаговые двигатели
    • Электрические усилитель руля
    • Приводные двигатели для гибридный и электрические транспортные средства. Электродвигатели каждого Toyota Prius требуется один килограмм (2,2 фунта) неодима.
    • Приводы
  • Электрические генераторы за Ветряные турбины (только с возбуждением постоянным магнитом)
  • Звуковая катушка
  • Разъединители корпусов для розничных медиа[требуется разъяснение]
  • В обрабатывающей промышленности мощные неодимовые магниты используются для улавливания инородных тел и защиты продукции и процессов.

Новые приложения

Сферы из неодимового магнита в форме куба

Большая сила неодимовых магнитов вдохновила на новые применения в тех областях, где магниты раньше не использовались, например, магнитные застежки для ювелирных изделий, детские магнитные конструкторы (и другие игрушки с неодимовым магнитом) и в составе закрывающего механизма современного спортивного парашютного снаряжения. Они являются основным металлом в ранее популярных магнитах для настольных игрушек «Buckyballs» и «Buckycubes», хотя некоторые розничные продавцы в США решили не продавать их из соображений безопасности детей. и они были запрещены в Канаде по той же причине.

Однородность напряженности и магнитного поля на неодимовых магнитах также открыла новые области применения в медицине с появлением открытых магнитно-резонансная томография (МРТ) сканеры, используемые для визуализации тела в радиологических отделениях в качестве альтернативы сверхпроводящим магнитам, в которых для создания магнитного поля используется катушка из сверхпроводящего провода.

Неодимовые магниты используются в качестве хирургически установленной антирефлюксной системы, которая представляет собой полосу магнитов. хирургически имплантированный вокруг нижний сфинктер пищевода лечить гастроэзофагеальная рефлюксная болезнь (ГЭРБ). Они также были имплантирован в кончики пальцев для того, чтобы предоставить чувственное восприятие магнитных полей, хотя это экспериментальная процедура, популярная только среди биохакеров и шлифовальные машины.

Поверхностные (амперовские) токи

Магнитные поля постоянных магнитов можно рассматривать как поля некоторых связанных с ними токов, протекающих по их поверхностям. Эти токи называют амперовскими. В обычном смысле слова токи внутри постоянных магнитов отсутствуют. Однако, сравнивая магнитные поля постоянных магнитов и поля токов в катушках, французский физик Ампер предположил, что намагниченность вещества можно объяснить протеканием микроскопических токов, образующих микроскопические же замкнутые контуры. И действительно, ведь аналогия между полем соленоида и длинного цилиндрического магнита почти полная: имеется северный и южный полюс постоянного магнита и такие же полюсы у соленоида, а картины силовых линий их полей также очень похожи (см. рисунок ниже).

Магниты в продаже

На самом деле магниты можно найти в самых непредсказуемых местах. Это могут быть держатели для ножей на кухне, настенные часы, различные статуэтки, украшения, предметы декора. В общем, любые предметы, которые обладают магнитными свойствами, могут содержать именно неодимы. Вопрос ли в том подойдет ли магнит, найденный дома в бытовом приборе или жестком диске по мощности и размерам. Также промышленные магниты изготавливаются с резьбой или отверстием, необходимой формы и диаметра. Если неодимовый магнит нужен для дела, то лучше задуматься о покупке настоящего большого магнита.

Детали из неодима сегодня присутствуют в большинстве домашних бытовых и электронных приборов. Если оборудование вышло из строя, Вы можете извлечь оттуда магнитные компоненты и с успехом использовать их в домашнем хозяйстве. Ниже мы приведем несколько приборов, где можно взять неодимовые магниты.

Громкоговорители

Можно также достать магнитные компоненты из так называемых «колонок». Однако если Вы «погуглите» «неодимовые магниты — где взять в быту», найдете не так много инструкций по разбору подобного оборудования. Главных причин здесь две. Во-первых, динамики акустических систем крайне редко ломаются, а если и ломаются, то часто поддаются ремонту. Во-вторых, в них чаще содержатся ферритовые кольца, неодимовые же сплавы используют только некоторые производители в современных, и обычно дорогих, громкоговорителях.

Выше мы описали лишь некоторые варианты по теме «неодимовые магниты где взять в быту», видео и другие статьи на нашем сайте, надеемся, помогут Вам в поиске магнитных изделий.

Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.

Физический механизм постоянной намагниченности

Чтобы объяснить функционирование постоянного магнита, мы должны заглянуть внутрь его до атомных масштабов. Каждый атом имеет набор спинов своих электронов, которые вместе формируют его магнитный момент. Для наших целей мы можем рассматривать каждый атом как небольшой полосовой магнит. Когда постоянный магнит размагничен (либо путем нагрева его до высокой температуры, либо внешним магнитным полем), каждый атомный момент ориентирован случайным образом (см. рис. ниже) и никакой регулярности не наблюдается.

Когда же он намагничен в сильном магнитном поле, все атомные моменты ориентируются в направлении поля и как бы сцепляются «в замок» друг с другом (см. рис. ниже). Это сцепление позволяет сохранить поле постоянного магнита при удалении внешнего поля, а также сопротивляться размагничиванию при изменении его направления. Мерой силы сцепления атомных моментов является величина коэрцитивной силы магнита. Подробнее об этом позже.

При более глубоком изложении механизма намагничивания оперируют не понятиями атомных моментов, а используют представления о миниатюрных (порядка 0,001 см) областях внутри магнита, изначально обладающих постоянной намагниченностью, но ориентированных при отсутствии внешнего поля случайным образом, так что строгий читатель при желании может отнести вышеизложенный физический механизм не к магниту в целом. а к отдельному его домену.

Традиционные материалы для постоянных магнитов

Они стали активно использоваться в промышленности, начиная с 1940 года с появления сплава алнико (AlNiCo). До этого постоянные магниты из различных сортов стали применялись лишь в компасах и магнето. Алнико сделал возможным замену на них электромагнитов и применение их в таких устройствах, как двигатели, генераторы и громкоговорители.

Это их проникновение в нашу повседневную жизнь получило новый импульс с созданием ферритовых магнитов, и с тех пор постоянные магниты стали обычным явлением.

Революция в магнитных материалах началась около 1970 года, с созданием самарий-кобальтового семейства жестких магнитных материалов с доселе невиданной плотностью магнитной энергии. Затем было открыто новое поколение редкоземельных магнитов на основе неодима, железа и бора с гораздо более высокой плотностью магнитной энергии, чем у самарий-кобальтовых (SmCo) и с ожидаемо низкой стоимостью. Эти две семьи редкоземельных магнитов имеют такие высокие плотности энергии, что они не только могут заменить электромагниты, но использоваться в областях, недоступных для них. Примерами могут служить крошечный шаговый двигатель на постоянных магнитах в наручных часах и звуковые преобразователи в наушниках типа Walkman.

Постепенное улучшение магнитных свойств материалов представлено на диаграмме ниже.

Опасности

Большие силы, проявляемые редкоземельными магнитами, создают опасности, которые могут не возникать с другими типами магнитов. Неодимовые магниты размером более нескольких кубических сантиметров достаточно сильны, чтобы причинить травмы частям тела, зажатым между двумя магнитами или магнитом и поверхностью черного металла, и даже вызвать переломы костей.

Магниты, которые подходят слишком близко друг к другу, могут удариться друг о друга с достаточной силой, чтобы сломать и разбить хрупкие магниты, а летящие стружки могут вызвать различные травмы, особенно травмы глаза. Были даже случаи, когда маленькие дети, проглотившие несколько магнитов, имели участки пищеварительный тракт зажат между двумя магнитами, что может привести к травме или смерти. Также это может быть серьезным риском для здоровья при работе с машинами, которые имеют магниты или прикреплены к ним. Более сильные магнитные поля могут быть опасны для механических и электронных устройств, так как они могут стирать магнитные носители, такие как дискеты и кредитные карты, и намагнитить часы и теневые маски из ЭЛТ типа мониторы на большем расстоянии, чем другие типы магнита. В некоторых случаях сколотые магниты могут стать причиной возгорания, поскольку они собираются вместе, посылая искры, летящие, как если бы это была зажигалка. кремень, потому что некоторые неодимовые магниты содержат ферроцерий.

Производство

Существует два основных метода производства неодимовых магнитов:

  • Классическая порошковая металлургия или спеченный магнитный процесс

    Спеченные неодимовые магниты получают путем плавления сырья в печи, заливки в форму и охлаждения для формирования слитков. Слитки измельчаются и размалываются; затем порошок спекается в плотные блоки. Затем блоки подвергаются термообработке, нарезке по форме, поверхностной обработке и намагничиванию.

  • Быстрое затвердевание или процесс приклеивания магнита

В 2015 г. Нитто Денко Корпорация Японии объявила о разработке нового метода спекания неодимового магнитного материала. В этом методе используется «органическая / неорганическая гибридная технология» для образования глиноподобной смеси, которой можно придать различные формы для спекания

Наиболее важно то, что можно контролировать неоднородную ориентацию магнитного поля в спеченном материале, чтобы локально концентрировать поле, например, для улучшения характеристик электродвигателей. Серийное производство запланировано на 2017 год

По состоянию на 2012 год 50 000тонны неодимовых магнитов официально производятся каждый год в Китае, и 80 000тонн за счет наращивания по каждой компании в 2013 году. Китай производит более 95% редкоземельных элементов и производит около 76% всех редкоземельных магнитов в мире, а также большую часть неодима в мире.

Применение неодимовых магнитов

Неодимовые магниты получили широкое распространение в различных сферах человеческой деятельности. Благодаря своим высоким эксплуатационным показателям они массово используются при производстве радиоаппаратуры, измерительных приборов, бытовой техники, медицинского оборудования, мобильных телефонов и прочих высокотехнологичных гаджетов. Высоким спросом пользуются эти магниты у производителей ветрогенераторов. Используется неодим и для производства поисковых магнитов, для справки — магнитная рыбалка это интересное, набирающее популярность, хобби. Для обеспечения потребностей потребителей, неодимовые магниты производятся самых различных форм и размеров и способны удовлетворить самый взыскательный спрос. Магниты могут быть изготовлены в форме диска, куба, стержня, цилиндра, призмы, бруска, кольца, сектора или шара. Кроме стандартных геометрических форм, возможно изготовление и более сложных и причудливых конфигураций — свойства материала это позволяют.

Неодимовые магниты в доме

Итак, где же взять неодимовый магнит в быту? Многие люди даже и не догадываются, что вокруг нас много где можно встретить изделие из этого редкого сплава. Можно выделить несколько мест и устройств где чаще всего такие магниты применяются.

Жесткие диски. Жесткие диски можно выделить первым местом среди всех устройств, где можно найти такой магнит. Причем такое устройство для хранения данных можно найти в любом доме. Разумеется никто не будет разбирать рабочий компьютер или ноутбук для того чтобы извлечь из него магнит. К тому же жесткий диск это высокотехнологичное устройство, которое довольно сложно вскрыть и разобрать. Также стоит отметить, что в жестких дисках находятся довольно мощные магниты, которые по своей силе не уступают тем, которые можно купить в специализированном магазине. Также важным моментом является то, что в современных жестких дисках магниты значительно слабее, ввиду новых стандартов и технологий производства, поэтому лучше поискать старый диск.

Мебельные защелки. Никто бы, наверное, не догадался, что искать мощный магнит можно в обычных мебельных защелках, которые держат дверь закрытой. Но внутри защелки очень часто располагается именно неодимовый магнит. Это обусловлено тем, что площадь поверхности защелки относительно не велика, поэтому обычные магниты не дадут необходимого эффекта. Также сами защелки довольно часто ломаются и после этого можно их разобрать и снять магниты, или же со старой мебели, которую часто просто выносят на свалку. Но стоит отметить, что и мощность таких магнитов невелика, поэтому они подойдут не для всех целей.

Двигатели и генераторы. Довольно часто мощные неодимовые магниты можно найти в современных электродвигателях. Мощность и размеры магнитов в двигателях довольно велики. Важным нюансом является то, что сам двигатель или генератор должен быть не сильно старым. Потому как производство неодимовых магнитов было начало сравнительно недавно. Поэтому в старых советских двигателях их, скорее всего не найти.

История

General Motors (GM) и Sumitomo Special Metals независимо друг от друга открыли Nd2Fe14B почти одновременно в 1984 г. Первоначально исследование было вызвано высокой стоимостью сырья. SmCo постоянные магниты, которые были разработаны ранее. GM сосредоточился на разработке спряденный из расплава нанокристаллический неодим2Fe14B, в то время как Sumitomo разработала спеченный Nd2Fe14Магниты B. GM коммерциализировала свои изобретения изотропный Нео пудра, связанный нео магниты и связанные с ними производственные процессы, основав Magnequench в 1986 году (с тех пор Magnequench стала частью Neo Materials Technology, Inc., которая позже слилась с Моликорп). Компания поставила формованный из расплава неодим2Fe14Порошок B производителям магнитов. В Сумитомо объект стал частью Hitachi Corporation, и производила, но также лицензировала другим компаниям производство спеченного неодима2Fe14Магниты B. Hitachi владеет более 600 патентами на неодимовые магниты.

Китайские производители стали доминирующей силой в производстве неодимовых магнитов, благодаря их контролю над большей частью мировых источников редкоземельных рудников.

В Министерство энергетики США определила необходимость поиска заменителей редкоземельных металлов в технологии постоянных магнитов и профинансировала такие исследования. В Агентство перспективных исследовательских проектов – Энергия спонсировал программу «Альтернативы редкоземельных элементов в критических технологиях» (REACT) по разработке альтернативных материалов. В 2011 году ARPA-E выделило 31,6 миллиона долларов на финансирование проектов по замене редкоземельных элементов. Из-за его роли в постоянных магнитах, используемых для Ветряные турбиныутверждалось, что неодим станет одним из главных объектов геополитической конкуренции в мире, Возобновляемая энергия. Но эта точка зрения подвергалась критике за непризнание того, что большинство ветряных турбин не используют постоянные магниты, и за недооценку силы экономических стимулов для расширения производства.

Как избавиться от подвижных контактов

Известна проблема создания бесконтактной синхронной машины. Традиционная ее конструкция с электромагнитным возбуждением от полюсов ротора с катушками предполагает подвод тока к ним через подвижные контакты – контактные кольца со щетками. Недостатки такого технического решения общеизвестны: это и трудности в обслуживании, и низкая надежность, и большие потери в подвижных контактах, особенно если речь идет о мощных турбо- и гидрогенераторах, в цепях возбуждения которых расходуется немалая электрическая мощность.

Если сделать такой генератор на постоянных магнитах, то проблема контакта сразу же уходит. Правда, появляется проблема надежного крепления магнитов на вращающемся роторе. Здесь может пригодиться опыт, накопленный в тракторостроении. Там уже давно применяется индукторный генератор на постоянных магнитах, расположенных в пазах ротора, залитых легкоплавким сплавом.

Вывод

Таким образом, выбирая магнитное устройство, обратите внимание на его марку, в которой зашифрована допустимая температура окружающей среды и магнитная сила. Однако упомянутые характеристики определяют эффективность магнита только отчасти, необходимо еще учитывать его массогабаритные показатели

Так если мы рассмотрим неодимовый магнит N52 и N42, сравнение будет корректным только в случае одинаковой массы и формы устройств. При внушительных размерах изделие с меньшими цифрами маркировки может оказаться мощнее. Наконец, внимательней относитесь к производителю и поставляющей компании, только так можно получить продукцию, соответствующую заявленным параметрам.

В заключение

Изготовление постоянных магнитов в домашних условиях — процесс достаточно простой. Однако при использовании определенных схем следует соблюдать аккуратность.

Самым мощным из постоянных магнитов считается неодимовый. Изготовить его в домашних условиях можно, однако для этого требуется заготовка из редкоземельного металла — неодима. Помимо этого, применяют сплав бора и железа. Такая заготовка намагничивается в магнитном поле. Стоит отметить, что такое изделие обладает огромной силой и теряет только 1 процент своих свойств в течение ста лет.

Сделать магнит своими руками довольно просто, при этом такое занятие принесет массу удовольствия вам и вашим детям – творчество отлично развивает фантазию и мелкую моторику. Возможно, со временем это занятие станет вашим хобби и даже дополнительным источником заработка.

Для того чтобы сделать украшение на холодильник, вам нужно сначала определиться с его функциональностью: будет ли это держатель для записок, календарик, магнит-игрушка или просто картинка.

Небольшие магниты, клей ПВА, ножницы и суперклей – вот нехитрый набор, который лежит в основе изготовления магнитов любой сложности.

Самый простой вариант – приклеить полюбившееся мини-изображение на плотный картон и на его заднюю часть прикрепить магнитик. Довольно красиво выглядят морские камни, вскрытые лаком. кстати, выглядят очень красиво. К ним нужно просто прикрепить магнит – украшение на холодильник готово.

Как вариант, можно использовать соленое тесто. По консистенции оно напоминает пластилин, из него можно лепить какие угодно фигурки, которые потом можно разукрасить красками и также покрыть лаком.

Необычно выглядят магниты, выполненные из пробок от винных бутылок. Чтоб сделать такое чудо вам понадобятся собственно пробки, немного земли и крохотные растения, магниты, нож, отвертка и термоклеевой пистолет.

В пробке ножом нужно проделать отверстие, удалив лишнее, наполнить пустоты землей и посадить растения. При помощи термоклея приклеить магнитную ленту. Не забывайте регулярно поливать свою микро-оранжерею.

Оригинально смотрятся магниты на холодильник, сделанные из полимерной глины. Для этого кроме глины понадобятся: скалка, формочки для выпечки, наждачная бумага, штампы и подушечка с чернилами, магниты и термоклеевой пистолет.

Полимерную глину раскатываем скалкой до толщины 5 см, наносим узоры при помощи штампов и разрезаем формочками для выпечки на разные интересные фигурки. Глина будет сохнуть примерно сутки, после чего нужно наждачкой счистить неровности и приклеить магниты.

Магниты для штор своими руками

Если хотите добавить в свой дом уют и красоту, нужно срочно узнать, как делают магниты для штор своими руками. Такая деталь интерьера несет не только декоративную функцию, но и является вполне практичной вещью.

Изготовление такого магнита практически ничем не отличается от тех, что крепятся на холодильник. Две половинки его нужно соединить между собой веревочкой или лентой. Чтоб прикрепить такое украшение к шторам, нужно присобрать ткань и защепить ее половинками магнита с двух сторон.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий