Медная промышленность
Медь – один из самых долговечных и
экологически чистых металлов.
Благодаря своим уникальным свойствам (очень высокой электропроводности, пластичности) применяется во многих отраслях экономики.
Основные потребители меди: наукоемкие производства и строительство
Источник получения меди – сульфидные руды (медный колчедан). Содержание меди в руде обычно менее 5%. Всю остальную массу занимают другие породы.
Производство меди
Сейчас распространен пирометаллургический способ производства меди: оно включает плавку, получение черновой меди. Получение чистой рафинированной меди.
Основные базы медной промышленности нашей страны находятся на Урале.
Месторождения бокситов
Запасы бокситов в мире ограничены. На всем земном шаре всего семь районов с его богатыми залежами. Это Гвинея в Африке, Бразилия, Венесуэла и Суринам в Южной Америке, Ямайка в Карибском регионе, Австралия, Индия, Китай, Греция и Турция в Средиземноморье и Россия.
В странах, где есть богатые месторождения бокситов, может быть развито и производство алюминия. Россия добывает бокситы на Урале, в Алтайском и Красноярском краях, в одном из районов Ленинградской области, нефелин — на Кольском полуострове.
Самые богатые месторождения принадлежат именно российской объединенной компании UC RUSAL. За ней идут гиганты Rio Tinto (Англия-Австралия), объединившийся с канадской Alcan и CVRD. На четвертом месте находится компания Chalco из Китая, затем американо-австралийская корпорация Alcoa, которые являются и крупными производителями алюминия.
На каких условиях принимают?
В большинстве случаев сразу после сдачи использованной тары продавцу выплачивают её стоимость
Следует брать во внимание тот факт, что на различных предприятиях условия приёма тары могут отличаться
Не в каждом пункте предусмотрен поштучный приём. Небольшое количество банок лучше сдавать перекупщикам. В этом случае минимальная масса будет не менее килограмма. Перекупщики не афишируют свой бизнес, потому чтобы найти их, придётся спрашивать. Лучшими осведомителями станут местные продавцы и дворники. Цены у приёмщиков самые низкие, ниже, чем в автоматах.
К сдаваемым поштучно банкам предъявляются требования. Они должны быть:
- целыми;
- чистыми;
- с цельным штрих-кодом.
При оптовой сдаче тоннами будут приняты любые банки, даже испачканные и смятые. Их, используя оборудование для переработки, сортируют и очищают машинным метолом.
Крупные предприятия, занимающиеся переработкой алюминиевых отходов, принимают тару в спрессованном виде сотнями килограмм. В этом случае при сдаче материала нужно предъявить удостоверение личности. Лом должен быть чистым и отсортированным. Требования к нему следующие:
- никаких радиационных загрязнений;
- 95% содержимого должен быть алюминий;
- отсутствие железа, грязи и бумажных остатков;
- металлургический выход – 90% и более.
Основные сведения, нормы ГОСТ
Алюминиевый прокат получают на заводах путем холодной или горячей прокатки. Основные примеры алюминиевого проката — цельные листы, фольга, шины, элементы обшивки.
В дальнейшем прокат может использоваться для производства оборудования и техники. Трубы, каркасные конструкции, радиоэлектронное оборудование, строительная обшивка, крылья самолетов.
Физические свойства
- Малый вес. Небольшая масса обуславливается низкой плотностью основного химического элемента. Благодаря этому свойству материал занимает большое положение в пространстве, но он мало весит. Небольшая масса — это большой плюс с практической точки зрения (в отличие от других металлов, которые обладают сравнительно большим удельным весом).
- Совместимость со многими другими металлами. Алюминиевый «дружит» со всеми основными металлами (железо, медь, хром, вольфрам и другие). Поэтому на практике алюминий применяется в качестве как гомогенного, так и гетерогенного сплава. Внесение легирующих присадок позволяет изменить свойства основного сплава. Пример: легирование алюминиевого материала железом улучшает жаропрочность, повышает коррозийную стойкость, делает материал более прочным.
- Химическая инертность, устойчивость к коррозии. На поверхности алюминия создается тонкая оксидная пленка, которая плохо вступает в контакт с внешней средой. Поэтому алюминий хорошо переносит контакт с химическими реагентами (кислоты, щелочи, соли). Еще один плюс оксидной пленки — это антикоррозийная защита, что также идет на пользу материалу.
- Слабые магнитные свойства. Стальные изделия обладают сильным магнитным полем, которое может вносить искажения в работу радиоприборов. Конечно, большинство приборов не рассчитаны на работу с радиоволнами, однако в случае радиоэлектронного оборудование наличие магнитных свойств может быть фатальным. Алюминий практически не обладают намагничиванием, а при контакте с радиосигналом он не вносит искажения. Поэтому этот материал можно использовать для создания чувствительного оборудования (антенны, радиотелескопы, передатчики и так далее).
- Неплохая прочность. Несмотря на малый вес материал обладает хорошей прочностью. Алюминий с различными легирующими добавками на основе хрома, железа, марганца широко используется для производства танковой и пехотной брони. Легирующие добавки также улучшают антикоррозийные свойства материала, благоприятно влияют влияют на надежность, срок годности.
Нормы
Производство алюминиевого проката регулируется государственными законами. Основные законодательные нормативы — это ГОСТ 21631, ГОСТ 21488–97, ГОСТ 22233 и другие. Алюминиевый прокат по ГОСТ может быть обработан всеми основными методами — сварка, адгезивное склеивание, пайка, загибка, болтовая техника, применение заклепок.
Прокатный лист может подвергаться естественной или искусственной закалке для изменения физических свойств материала. Согласно ГОСТ все прокатные листы должны удовлетворять следующим минимальным требованиям:
- Удлинение вдоль любого плоского направления — до 20%.
- Физическая текучесть — до 400 МПа.
- Краткосрочное сопротивление деформации — до 500 МПа.
- Поверхность должна обладать только глянцевой или матовой структурой.
Также по ГОСТ на прокатном листе не допускается наличие различных повреждений. Примеры запрещенных повреждений — диффузные или коррозийные следы, расслоение, белесые пятна, трещины, шлаковые либо неметаллические включения. При обнаружении подобных дефектов материал должен быть утилизирован либо переплавлен, поскольку наличие дефектов может спровоцировать возникновение аварии.
Земельный фактор размещения производств
Земля может быть играет не такую уж и важную роль, по сравнению с другими факторами, такими как сырьевой, транспортный и так далее. Однако, нельзя забывать и про него. При выборе места под строительство предприятия, владельцу фирмы необходимо также учитывать наличие земли и её пригодность для строительства.
Бывает так, что владелец фирмы, желающий построить завод, нашёл хорошее место под строительство: здесь полно сырья, есть работоспособное население, рядом проходит транспортная магистраль, по которой можно легко перевозить ресурсы, но есть одна ключевая проблема — земля не пригодна под строительство. Либо бывает другая ситуация: участок земли может стоить в данном регионе очень большие деньги или свободной земли вообще нет.
Учитывая, что одному предприятию необходим большой участок земли, иногда, площадь может равняться нескольким 10 Га, то лучше всего размещать предприятия комплексно. Однако, в условиях реального мира, это не всегда возможно.
Программное обеспечение
Не забывайте, что резать алюминиевый профиль лучше станком, который управляется специальной программой. Она сильно удешевляет себестоимость продукции, так как все расчеты производятся буквально за пару минут.
Конечно, тот же архитектор сможет выполнить все это и вручную, но тогда времени на это уйдет в десятки раз больше. То ли дело программа! Стоит подобное ПО в районе пары тысяч долларов.
Кстати, а что можно сделать из алюминия в принципе? Из профиля производят каркасы для стеклопакетов и дверей, теплиц и небольших торговых точек. Из алюминия же изготавливают основы для рекламных бигбордов, а также всю аналогичную продукцию.
Словом, без клиентов вы точно не останетесь! Да и деньги у вас тоже будут, так как алюминиевые изделия и конструкции с каждым годом только дорожают.
Критерии выбора расположения объектов цветной металлургии
Геологический фактор – главный из критериев, влияющих на размещение заводов по производству цветных металлов. Из-за низкой доли полезного компонента в рудах цветных металлов, их транспортировка экономически нецелесообразна.
Это требует расположения заводов этой отрасли в местах добычи полезных ископаемых. Производство никеля, например, строго привязано к месту его добычи.
Разработка месторождение цветных металлов часто сопряжена с рядом трудностей. Доступ к полезным минералам часто огражден щитом пустой породы и его приходится взрывать. Такая разработка требует применения большого количества техники: экскаваторов, транспортеров, электровозов.
Характеристика факторов размещения производства
Под сырьевым фактором понимается размещение предприятий у источников сырья для получения определенной продукции: около месторождений полезных ископаемых, крупных водных объектов, в лесных зонах и т. п. Размещение таких производств вблизи источников сырья исключает перевозку больших объемов и снижает расходы предприятий. Поэтому производства организуются как можно ближе к источникам сырья. Готовая продукция предприятий будет более дешевой за счет снижения расходов на доставку сырья. Сырьевой фактор оказывает значительное влияние на размещение целого ряда промышленных производств: например, на производство калийных удобрений, цемента, лесопиление, обогащение руд цветных металлов.
Топливный фактор, как и сырьевой, оказывает такое же влияние на размещение производства. Он является определяющим в размещении отраслей, использующих для производства продукции большие объемы минерального топлива: угля, природного газа, мазута. К таким отраслям относятся теплоэнергетика, отдельные производства черной металлургии, химической промышленности. Так, наиболее мощные тепловые электростанции в США, России, Китае построены вблизи крупных угольных месторождений. У месторождений угля размещаются многие предприятия по производству чугуна и стали.
Энергетический фактор влияет на размещение производств, в которых на создание единицы продукции потребляется большое количество преимущественно электрической энергии. Такие производства называются энергоемкими. К ним относится производство многих легких цветных металлов (алюминия, титана и др.), химических волокон, бумаги. Предприятия по производству энергоемкой продукции размещаются в тех районах, где в больших объемах производится преимущественно дешевая электроэнергия, например около крупных гидроэлектростанций.
Трудовой фактор оказывает решающее влияние на размещение производств, основанных на использовании большого количества трудовых ресурсов, в том числе высококвалифицированных специалистов. Это трудоемкие производства. Например, в легкой промышленности к таким производствам относится швейное производство. В сельском хозяйстве наиболее трудоемкими являются рисоводство, овощеводство, плодоводство. Производство электронного оборудования, персональных компьютеров предполагает использование квалифицированных кадров. Ориентированные на трудовой фактор, эти производства размещаются преимущественно в густонаселенных районах с дешевой рабочей силой.
Потребительский, или рыночный, фактор влияет на размещение отраслей, производящих продукцию, пользующуюся широким, иногда повседневным, спросом у населения. Это продукты питания, одежда, обувь, бытовая техника и др. Такие производства ориентируются на потребителя и размещаются практически во всех крупных населенных пунктах.
Роль транспортного фактора важна для всех отраслей, продукция которых потребляется не на месте ее производства, а поставляется в другие районы. Все предприятия заинтересованы в снижении расходов на доставку готовой продукции в районы ее потребления. Поэтому многие производства размещаются возле крупных транспортных узлов, в морских портах, на линиях магистральных железных дорог, нефтепроводов. Мозырский нефтеперерабатывающий комбинат был построен рядом с нефтепроводом «Дружба».
При размещении производств большое значение приобретает экологический фактор, связанный с охраной окружающей среды. Этот фактор ограничивает создание производства, если оно может нанести вред окружающей среде. К производствам, которые характеризуются большими выбросами загрязняющих веществ или иным вредным воздействием на окружающую среду, предъявляются повышенные экологические требования. Их запрещается размещать в крупных городах и густонаселенных районах. На этих предприятиях должны использоваться современные малоотходные технологии и возводиться сооружения по очистке выбросов.
В современных условиях роль экологического фактора возрастает — он влияет на размещение всех производств
Наиболее важно учитывать экологический фактор при размещении предприятий химической промышленности, металлургии, энергетики, особенно при строительстве АЭС
Бокситовая руда – основа мирового производства алюминия
Непосредственно сам серебристый металл получают из глинозема. Это сырье представляет собой оксид алюминия (Аl2О3), получаемый с руд:
Самый распространенный источник получения исходного материала это бокситы, их и считают основной алюминиевой рудой.
Несмотря на уже более чем 130 летнюю историю открытия, понять происхождение алюминиевой руды до сих пор не удалось. Возможно, что попросту в каждом регионе сырье образовалось под воздействием определенных условий. И это создает затруднения, чтобы вывести одну универсальную теорию об образовании бокситов. Основных гипотез происхождения алюминиевого сырья три:
- Они образовались вследствие растворения некоторых типов известняков, как остаточный продукт.
- Боксит получился в результате выветривания древних пород с дальнейшим их переносом и отложением.
- Руда является результатом химических процессов разложения железных, алюминиевых и титановых солей, и выпала как осадок.
Однако, алунитовые и нефелиновые руды образовывались в отличных условиях от бокситов. Первые формировались в условиях активной гидротермальной и вулканической деятельности. Вторые — при высоких температурах магмы.
Как результат, алуниты, в основном, имеют рассыпчатую пористую структуру. В их составе имеется до 40% различных оксидных соединений алюминия. Но, кроме собственно самой алюмниеносной руды в залежах, как правило, имеются добавки, что влияет на рентабельность их добычи. Считается выгодным разрабатывать месторождение при 50-ти процентном соотношении алунитов к добавкам.
Нефелины обычно представлены кристаллическими образцами, которые кроме алюминиевого оксида содержат добавки в виде различных примесей. Зависимо от состава, такой тип руды классифицируют по типам. Самые богатые имеют в своем составе до 90% нефелинов, второсортные 40-50%, если минералы беднее этих показателей, то не считается нужным вести их разработку.
Имея представления, о происхождении полезных ископаемых, геологическая разведка может довольно точно определить места нахождения залежей алюминиевых руд. Также условия формирования, влияющие на состав и структуру минералов, определяют способы добычи. Если месторождение считается рентабельным, налаживают его разработку.
Алюминиевая промышленность
Алюминиевая промышленность входит в состав комплекса отраслей цветной металлургии.
Определение 3
Алюминиевой промышленностью называют совокупность предприятий, отвечающих за добычу алюминиевых руд, их переработку и обогащение, производство металлического алюминия и алюминиевого литья.
В структуре продукции цветной металлургии алюминиевой промышленности принадлежат лидирующие позиции. А в структуре продукции общей металлургии производство алюминия по объемам уступает лишь производству стали. Главными потребителями металлического алюминия являются авиационное, космическое и электротехническое машиностроение, автомобильная промышленность, химическая и пищевая отрасли.
В структуре алюминиевой промышленности выделяют следующие составляющие:
- разработка и добыча алюминиевых руд;
- обогащение руд;
- производство металлического алюминия и алюминиевого литья;
- обслуживающие отрасли и отрасли обеспечения основного производства.
Оксид алюминия Al2O3
Оксид алюминия Al2O3, называемый также глиноземом, встречается в природе в кристаллическом виде, образуя минерал корунд. Корунд обладает очень высокой твердостью. Его прозрачные кристаллы, окрашенные в красный или синий цвет, представляют собой драгоценные камни — рубин и сапфир. В настоящее время рубины получают искусственно, сплавляя с глиноземом в электрической печи. Они используются не столько для украшений, сколько для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr2O3, применяют а качестве квантовых генераторов — лазеров, создающих направленный пучек монохроматического излучения.
Корунд и его мелкозернистая разновидность, содержащая большое количество примесей — наждак, применяются как абразивные материалы.
Способы получения
Оксид алюминия можно получить различными методами:
1. Горением алюминия на воздухе:
4Al + 3O2 → 2Al2O3
2. Разложением гидроксида алюминия при нагревании:
2Al(OH)3 → Al2O3 + 3H2O
3. Оксид алюминия можно получить разложением нитрата алюминия:
4Al(NO3)3 → 2Al2O3 + 12NO2 + 3O2
Химические свойства
Оксид алюминия — типичный амфотерный оксид. Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.
1. При взаимодействии оксида алюминия с основными оксидами образуются соли-алюминаты.
Например, оксид алюминия взаимодействует с оксидом натрия:
Na2O + Al2O3 → 2NaAlO2
2.Оксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—алюминаты, а в растворе – комплексные соли. При этом оксид алюминия проявляет кислотные свойства.
Например, оксид алюминия взаимодействует с гидроксидом натрия в расплаве с образованием алюмината натрия и воды:
2NaOH + Al2O3 → 2NaAlO2 + H2O
Оксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:
Al2O3 + 2NaOH + 3H2O → 2Na
3. Оксид алюминия не взаимодействует с водой.
4. Оксид алюминия взаимодействует с кислотными оксидами (сильных кислот). При этом образуются соли алюминия. При этом оксид алюминия проявляет основные свойства.
Например, оксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:
Al2O3 + 3SO3 → Al2(SO4)3
5.Оксид алюминия взаимодействует с растворимыми кислотами с образованием средних и кислых солей.
Например, оксид алюминия реагирует с серной кислотой:
Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O
6. Оксид алюминия проявляет слабые окислительные свойства.
Например, оксид алюминия реагирует с гидридом кальция с образованием алюминия, водорода и оксида кальция:
Al2O3 + 3CaH2 → 3CaO + 2Al + 3H2
Электрический токвосстанавливает алюминий из оксида (производство алюминия):
2Al2O3 → 4Al + 3O2
7. Оксид алюминия — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.
Например, из карбоната натрия:
Al2O3 + Na2CO3 → 2NaAlO2 + CO2
Производство
производство алюминия Одна красивая, но, вероятно, неправдоподобная легенда из «Historia naturalis«
гласит, что однажды к римскому императору Тиберию (42 год до н. э. — 37 год н. э.) пришёл ювелир с металлической, небьющейся обеденной тарелкой, изготовленной, якобы из глинозёма — Al2O3. Тарелка была очень светлой и блестела, как серебро. По всем признакам она должна быть алюминиевой. При этом ювелир утверждал, что только он и боги знают, как получить этот металл из глины. Тиберий, опасаясь, что металл из легкодоступной глины может обесценить золото и серебро, приказал, на всякий случай, отрубить человеку голову. Очевидно, данная легенда весьма сомнительна, так как самородный алюминий в природе не встречается в силу своей высокой активности и во времена Римской империи не могло быть технических средств, которые позволили бы извлечь алюминий из глинозёма.
Лишь почти через 2000 лет — в 1825 году, датский физик Ханс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей пленкой оксида алюминия.
До конца XIX века алюминий в промышленных масштабах не производился.
Только в 1854 году Анри Сент-Клер Девиль изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.
В 1885 году, основываясь на технологии, предложенной русским ученым Николаем Бекетовым, был построен завод по производству алюминия в немецком городе Гмелингеме. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путем в период с 1854 по 1890 год.
Метод, изобретённый почти одновременно Чарльзом Холлом во Франции и Полем Эру в США в 1886 году и основанный на получении алюминия электролизом глинозема, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с усовершенствованием электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозема внесли русские ученые К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.
Первый алюминиевый завод в России был построен в 1932 году в Волхове. Металлургическая промышленность СССР в 1939 году производила 47,7 тыс.тонн алюминия, ещё 2,2 тыс.тонн импортировалось.
Вторая мировая война значительно стимулировала производство алюминия. Так, в 1939 году общемировое его производство, без учёта СССР, составляло 620 тыс. т, но уже к 1943 году выросло до 1,9 млн т.
К 1956 году в мире производилось 3,4 млн т первичного алюминия, в 1965 году — 5,4 млн т, в 1980 году — 16,1 млн т, в 1990 году — 18 млн т.
В 2007 году в мире было произведено 38 млн т первичного алюминимя, а в 2008 — 39,7 млн т. Лидерами производства являлись: Китай (в 2007 году произвёл 12,60 млн т, а в 2008 — 13,50 млн т), Россия (3,96/4,20), Канада (3,09/3,10), США (2,55/2,64), Австралия (1,96/1,96), Бразилия (1,66/1,66), Индия (1,22/1,30), Норвегия (1,30/1,10), ОАЭ (0,89/0,92), Бахрейн (0,87/0,87), ЮАР (0,90/0,85), Исландия (0,40/0,79), Германия (0,55/0,59), Венесуэла (0,61/0,55), Мозамбик (0,56/055), Таджикистан (0,42/0,42).
В России фактическим монополистом по производству алюминия является ОАО «Русский алюминий», на который приходится около 13 % мирового рынка алюминия и 16 % глинозёма.
Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.
Где найти алюминий в домашних условиях?
Алюминий является наиболее распространенным металлом на планеты – массовая доля алюминиевых сплавов составляет порядка 8% от массы земной коры. Основными источниками алюминия среди хозяйственной утвари являются:
- Кухонная посуда – ввиду легкости переработки, из алюминия производятся столовые приборы, а также кастрюли, тарелки и кружки путем литья или штамповки расплавленного метала. Особенностями алюминия являются устойчивость к перепадам температур и высокая прочность, благодаря чему посуда имеет долгий срок эксплуатации;
- Стройматериалы – алюминий широко используется при строительстве благодаря легкости обработки и малому весу, в результате чего возможно усилить любую конструкцию без повышения нагрузки на фундамент. На стройках или при разборке зданий алюминий можно найти в составе опорных панелей, защитных щитков или в качестве изолирующего покрытия – алюминиевая фольга используется как составляющая оплетки электропроводки или термоэкраниющий слой;
- Антенны и электроника – высокая пластичность и электропроводимость обеспечивает передачу тока без энергопотерь или радиоимпульсов без ошибок при модулировании сигнала. Высокое содержание метала находится в силовых кабелях большого сечения и сигнальных ретрансляторах. Также алюминий можно найти при разборке различных гаджетов: компьютеров, радиоприемников или планшетов в составе корпуса или элементов электрогарнитуры;
- Детали транспорта – низкий вес и прочность сравнимая со сталью стали причиной использования алюминия в автомобилестроении или при производстве хозяйственно-бытовой техники. С алюминия выливаются детали кузова или компоненты периферийного оборудования: элементы двигателя, шасси, литые диски – богатый источник метала.
Обратите внимание! При наличии механических повреждений на алюминии снимается защитная оксидная пленка, что приводит к дальнейшему окислению метала – чтобы восстановить защитный слой рекомендуется окунуть поврежденный предмет в холодную воду на несколько часов, в противном случае метал начнет постепенно ссыхаться
Применение алюминиевой руды
В основном до 60% рудного сырья используется для получения алюминия. Однако богатый состав позволяет извлекать из него, и другие химические элементы: титан, хром, ванадий и прочие цветные металлы, необходимые в первую очередь в качестве легирующих добавок для улучшения качеств стали.
Как вспоминалось выше технологическая цепочка получения алюминия обязательно проходит через стадию образования глинозема, который также используют в качестве флюсов в черной металлургии.
Богатый состав элементов в алюминиевой руде используется и для производства минеральной краски. Также способом плавки производится глиноземный цемент – быстро застывающая прочная масса.
Еще один материал, получаемый из бокситов – электрокорунд. Его получают путем плавления руды в электропечах. Это очень твердое вещество, уступающее только алмазу, что делает его востребованным в качестве абразива.
Также в процессе получения чистого металла образуются отходы – красный шлам. Из него извлекают элемент – скандий, который применяется в производстве алюминиево-скандиевых сплавов, востребованных в автомобильной промышленности, ракетостроении, выпуске электроприводов, и спортивного оборудования.
Документация и лицензия
Чтобы организовать небольшой завод по изготовлению алюминия, необходимо получить:
- сертификат на изготовление алюминия;
- сертификат соответствия продукции;
- лицензию на проведение строительных работ.
Для получения сертификата нужно сделать проект и пойти в городскую администрацию для получения разрешения. После предварительного одобрения потребуется обойти еще несколько служб: пожарную, санитарную, экологическую инстанции, а также поставщиков света и воды.
Далее после исправления возможных ошибок, нужно опять идти в администрацию на окончательное утверждение.
Сертификат соответствия должен быть на каждый вид производимой продукции. Чтобы его получить, нужно сдать образец в региональный центр сертификации. Здесь профиль испытают по нескольким параметрам, поэтому сертификат обойдется примерно в 18 000 рублей.
Чтобы получить лицензию, придется обратиться в лицензионный центр.